Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Environmental
Modelling & Software

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Environmental Modelling & Software 25 (2010) 1197—1207

Contents lists available at ScienceDirect

Environmental Modelling & Software

journal homepage: www.elsevier.com/locate/envsoft

Marine Geospatial Ecology Tools: An integrated framework for ecological
geoprocessing with ArcGIS, Python, R, MATLAB, and C++

Jason J. Roberts **, Benjamin D. Best?, Daniel C. Dunn?, Eric A. TremlP, Patrick N. Halpin?

@ Marine Geospatial Ecology Laboratory, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
P The University of Queensland, School of Biological Sciences, St. Lucia, Queensland 4072, Australia

ARTICLE INFO ABSTRACT

Article history:

Received 16 January 2009
Received in revised form

18 March 2010

Accepted 26 March 2010
Available online 24 April 2010

With the arrival of GPS, satellite remote sensing, and personal computers, the last two decades have
witnessed rapid advances in the field of spatially-explicit marine ecological modeling. But with this
innovation has come complexity. To keep up, ecologists must master multiple specialized software
packages, such as ArcGIS for display and manipulation of geospatial data, R for statistical analysis, and
MATLAB for matrix processing. This requires a costly investment of time and energy learning computer
programming, a high hurdle for many ecologists. To provide easier access to advanced analytic methods,
we developed Marine Geospatial Ecology Tools (MGET), an extensible collection of powerful, easy-to-use,
open-source geoprocessing tools that ecologists can invoke from ArcGIS without resorting to computer
programming. Internally, MGET integrates Python, R, MATLAB, and C++, bringing the power of these
specialized platforms to tool developers without requiring developers to orchestrate the interoperability

Keywords:

Marine ecology
Spatial ecology
Software integration

Interoperability between them.

Informatics In this paper, we describe MGET’s software architecture and the tools in the collection. Next, we
Habitat modeling present an example application: a habitat model for Atlantic spotted dolphin (Stenella frontalis) that
glcseanography predicts dolphin presence using a statistical model fitted with oceanographic predictor variables. We

conclude by discussing the lessons we learned engineering a highly integrated tool framework.
© 2010 Elsevier Ltd. All rights reserved.

Software availability

Name of software: Marine Geospatial Ecology Tools (MGET)
Developer: Duke University, Marine Geospatial Ecology Laboratory
Contact: mget-help@nicholas.duke.edu

Year first available: 2007

Hardware required: PC (2 GB RAM, 2 GHz CPU recommended)
Software required: Windows XP or later, Python 2.4 or later; ArcGIS
9.1 or later is optional but highly recommended

Program languages: Python, C++, C#, R, MATLAB

Program size: ~20 MB

Availability: Download from http://mgel.env.duke.edu/tools

Cost: Free, licensed under the GNU GPL

1. Introduction

The Duke University Marine Geospatial Ecology Laboratory
specializes in the development of spatially-explicit ecological

* Corresponding author. Tel.: +1 206 619 2736.
E-mail address: jason.roberts@duke.edu (J.J. Roberts).

1364-8152/$ — see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.envsoft.2010.03.029

modeling techniques and the application of those methods in
marine ecology studies and conservation projects. By publishing
reusable and interoperable software tools in addition to journal
articles, we hope to allow other researchers, managers, and
conservation practitioners to repeat our analyses without reen-
gineering them from scratch, to integrate them into larger scientific
and management workflows, and ultimately to leverage them in an
operational context. To maximize our pool of potential users, we
target ecologists and analysts with moderate expertise in
geographic information systems (GIS) and little experience in
computer programming.

Developing tools for this community is hard. The community
requires that tools be easy to install and operate, with graphical
user interfaces (GUIs), ideally integrated with a GIS. For simple
tools, such as a tool for building polygons for the regions traversed
by drifting longline fishing gear (Dunn et al., 2008), we found we
could satisfy these requirements by writing geoprocessing tools for
ArcGIS using the Python programming language (ESRI, 2008;
Python Software Foundation, 2008). ArcGIS is well known: an
ongoing survey of nearly 40,000 GIS professionals found that Arc-
GIS is the dominant GIS platform, with 78% of respondents
reporting that they used ArcGIS or related ESRI products and only

1198 J.J. Roberts et al. / Environmental Modelling & Software 25 (2010) 1197—1207

27% reporting that they used the next most popular GIS product
(GISJobs.com, 2008). Python is a modern, open-source language
that has been integrated into ArcGIS. Developing Python-based
geoprocessing tools for ArcGIS is easy: all tools share a common
graphical user interface provided by ArcGIS, and developers must
implement only the geospatial analysis tasks performed by the tool.

For more complicated tools, we found that ArcGIS and Python
did not provide all of the analytic functionality we needed. For
predictive modeling tools, such as a system for predicting marine
animal habitats from oceanographic conditions (Best et al., 2007),
or a tool for predicting hard bottom substrate from coarse-resolu-
tion bathymetry (Dunn and Halpin, 2009), we needed multivariate
statistical modeling functions. The platform we preferred for this
was R, a popular statistics programming language (R Development
Core Team, 2008). For math-intensive modeling tools, such as
a hydrodynamic simulation of the dispersal of larvae between coral
reefs (Treml et al., 2008), we preferred MATLAB, a popular
programming platform for numeric processing (MathWorks, 2008).
Unfortunately, R and MATLAB proved unsuitable as user interfaces
for our target community because they both require programming
expertise to operate effectively.

To provide our target community with an acceptable user
interface and our developers with sufficient analytic functionality,
we concluded that we must integrate ArcGIS and Python with R and
MATLAB. To avoid reengineering this integration on a tool-by-tool
basis, we decided to rewrite them all under a common software
framework and release them as a unified collection called Marine
Geospatial Ecology Tools (MGET).

Besides providing engineering benefits, this approach
benefitted our tool development process as well. Our development
process essentially follows Argent’s (2004) four-level process for
developing environmental models, in which a model (or tool) is
first developed by a researcher for a specific problem, then gener-
alized and tested for a range of similar problems, then reengi-
neered, repackaged, and documented for widespread operational
use, and finally adopted by planners and policy makers as a reliable
“black box”. Most of our tools start out as rough prototypes
developed for specific research projects, but when they have high
potential utility, our goal is to take them to at least the third level of
Argent’s process. To successfully transition to the third level, in
which a tool is of suitable quality to be used operationally, we have
found it is almost always necessary to throw away the prototype
and rewrite the tool from scratch. By developing a unified frame-
work and release vehicle for all of our tools, we reduced both the
temptation to release low quality prototypes and the effort required
to rewrite them as high quality members of a consistent collection.

2. Software architecture of MGET

Although the ArcGIS/Python/R/MATLAB integration was a key
requirement for MGET, it was not the only one. Here, we enumerate
the other important requirements, present the architecture of
MGET tools, and describe MGET’s code-generation functionality,
a key component of the architecture that facilitates the integration.

2.1. Key requirements

As mentioned, we wanted to give developers access to ArcGlIS,
Python, R, and MATLAB for implementing their tools. We also
wanted to allow development in C++ to implement CPU-intensive
tools, such as a multi-threaded version of the Cayula and Cornillon
(1992) algorithm for identifying fronts in sea surface temperature
images.

As mentioned, we wanted to expose MGET tools in ArcGIS as
geoprocessing tools, allowing us to capitalize on ArcGIS’s familiar

user interface and its ModelBuilder graphical workflow system. To
facilitate interoperability with other programming languages, we
also wanted to expose each tool using the Microsoft Component
Object Model (COM) (see Rogerson, 1997). Finally, we wanted the
architecture to facilitate the exposure of tools to other workflow
systems such as Kepler (Luddscher et al., 2006) in the future.

Much of the functionality we required, such as functions for
reading scientific file formats like NetCDF and HDF or functions for
calculating biodiversity indices, was not available in the core
Python, R, and MATLAB software, but in extension packages and
toolboxes. In predecessors to MGET (Best, 2006a,b, 2007), we found
that these extensions speeded development but complicated
installation, frustrating our users. Users experienced many failures
related to missing software, but often could not determine that this
was the root cause of the problem. With MGET, we wanted each
tool to check its software dependencies prior to executing and to
report a clear error message and installation instructions when
required software was missing. Also, we wanted the MGET instal-
lation program to automatically install as much required software
as possible.

Finally, to minimize user costs, we wanted MGET to be a free,
open-source project and to leverage free software whenever
possible. Even though Windows ArcGIS users constituted our
primary user community, we wanted MGET tools to be indepen-
dent of Windows and ArcGIS whenever possible.

2.2. Tool architecture

MGET is a collection of tools. A tool is analogous to a synchro-
nous subroutine: it accepts inputs, performs some processing, and
produces outputs. While it is executing, it blocks the thread of
execution of the calling program. We selected this simple construct
because it facilitates interoperability: all common programming
languages support it, ArcGIS geoprocessing tools must conform to
it, and it is easily represented in workflow systems.

An MGET tool consists of a Python class method (van Rossum,
2001) that implements the tool’s processing, and some metadata.
The metadata specifies the method’s software dependencies,
documentation, and the data types and validation steps for its input
and output parameters, and designates how it should be exposed
for invocation by other programs. Using the metadata, MGET
automatically checks dependencies, validates input parameter
values, and implements interoperability plumbing, freeing the
developer to focus his code on the scientific problem addressed by
the tool.

Fig. 1 shows the invocation flow for a hypothetical tool called
MyTool, implemented in the Python module MyTool .py. In this
example, the developer designated MyTool for maximal interop-
erability. ArcGIS users invoke MyTool via a geoprocessing tool in
the MGET ArcGIS toolbox. Python programs invoke it by importing
the MyTool.py module and calling it directly. Early-bound COM
clients, such as programs written in C, C++, C#, or FORTRAN,
invoke it by compiling with an MGET COM type library (not shown)
and calling through the 1MyTool COM interface. Late-bound COM
clients, such as programs written in Visual Basic, VBA, VBScript,
Jscript, R, and MATLAB, invoke it through COM Automation, which
operates through the 1Dispatch COM interface. To expose MyTool
to both types of COM callers, MGET leverages the win32com
module from the Python for Windows extensions (also known as
pywin32) (Hammond et al., 2008).

When the tool is invoked through any of the mechanisms
described above, MGET checks dependencies, validates input
parameter values, and executes the Python code written by the tool
developer. The developer’s Python code can call functions from any
of the six sources: Python, C/C++, MATLAB, R, ArcGIS, and COM.

JJ. Roberts et al. / Environmental Modelling & Software 25 (2010) 1197—1207 1199
Early-bound Late-bound
ArcGIS 9.x pnzy;r:;s COM clients COM clients
External (e.g. C++) (e.g. VBScript)
callers \ /K
MGET
IMyTool Q Q IDispatch
MGET ArcGIS I l
Toolbox e
win32com |
module MyTool
P l COM class
MGET COM
= | outen rodii pythoncom2x.dil
packages |l MyTool.py
Python extension DLL Python extension DLL MGET R MGET ArcGIS MGET COM
module module module
MyToolMatlab.pyd l l l
C++ ¢ rpy module arcgisscripting iRaCom
i module
or win32com
dul l
MyTool.cpp MATLAB Component l mote
Runti MCR i
—— untime (MCR) S l Q IDispatch
l i l ArcGIS [
geoprocessor COM
I: t l Automation
C libraries | classes

¥\

MyTool.m

ArcGIS
toolboxes

MyTool.r

,

,

MATLAB
toolboxes

R packages

Fig. 1. MGET's software architecture. Boxes show major software modules and arrows show invocation flow between modules. The four documents labeled MyTool represent
source code files for a hypothetical MGET tool that is implemented in Python, C++, MATLAB, and R.

MGET provides substantial infrastructure to facilitate this integra-
tion, allowing the developer to quickly access his preferred plat-
forms. If the developer chooses to implement his tool in a language
other than Python, his Python code can be as short as two lines, the
minimum needed to access another language through MGET's
infrastructure. If he needs to access multiple languages, he can
orchestrate the overall flow from Python.

We selected Python as the “core” language for development of
MGET tools in part because it provides excellent facilities for
interoperating modules implemented in other programming
languages (see, for example, Schmitz et al., 2009). In the example in
Fig. 1, the developer authored functions in C++, MATLAB, and R, in
the files MyTool . cpp, MyTool .m, and MyTool . r, respectively, in
addition to the Python code in MyTool.py. Python supports
compilation of C/C++ functions into Python extension modules
(van Rossum, 2008), allowing the functions to be called just like
those written in Python itself. MGET performs this compilation
automatically. MATLAB functions work similarly: MGET wraps
them with C++ and compiles the wrappers into Python extension
modules, which invoke the .m files through the MATLAB Compo-
nent Runtime (MCR), a free redistributable from the publisher of
MATLAB. To provide access to R, MGET leverages the rpy module

(Moreira and Warnes, 2008), which wraps the R interpreter in
a Python interface.

2.3. Code generation

It has been shown that developers can be more productive and
introduce fewer errors when they can leverage programs that
generate code for them (Weigert and Dietz, 2003; Kieburtz et al.,
1996). MGET’s code-generation capabilities relieve tool devel-
opers of much of the coding needed for the integration and inter-
operability described above. After a developer writes a tool and its
metadata, he executes a build script. As illustrated in Fig. 2, the
build script generates the files needed for integration and inter-
operability, as well as the tool’s documentation, and packages it all
into a setup program. When the user runs the setup program, it
installs the files on the user’s machine, registers the MGET toolbox
with ArcGlIS, and registers the MGET COM classes with Windows.

3. Tools in the MGET collection

At the time of this writing, MGET included over 180 tools,
grouped into seven categories: Conversion, Data Management,

1200

If tool is designated
for exposure through
COM, write IDL

Compile type
library

DL |———

MGET.idl

A

d

MGET.tib

A

J.J. Roberts et al. / Environmental Modelling & Software 25 (2010) 1197—1207

MGET.tbx

h 4

Package installation
files into setup program

Setup program

A4

puthon = z
If tool is designated for
MyTool.py exposure as ArcGIS tool,
write toolbox and script
Serial$‘
metadata as XML
XML
Metadata \
Transform XML into
HTML documentation
@)
CH++ | — | i
Compile Python
MyTool.cop extension DLL MyTool.pyd
SO
Ry
Compile MATLAB o
shared C++ library MyTool
Matlab.dll

s)

MyTool.m
Write G+ b‘

for MATLAB library

MyTool
Matlab.ctf

’

C++

_—

MyTool Compile Python
Matlab.cpp| extension DLL

A4

SO0

g
MyTool

Matlab.pyd

\ 4

Source files

Files generated by the MGET build script

Fig. 2. Files automatically generated by the MGET build script for a hypothetical MGET tool called MyTool that is implemented in Python, C++, MATLAB, and R. After generating the

files, the build script packages them into the MGET setup program.

Spatial Analysis, Oceanographic Analysis, Connectivity Analysis,
Statistics, and Data Products. In this section, we briefly summarize
each category and highlight some of the tools they contain.

The Conversion tools convert geospatial data from one format to
another, allowing ArcGIS users to convert oceanographic data from
popular formats such as HDF, NetCDF, and binary flat files to
formats that ArcGIS can read. Also included is a tool for down-
loading data from an OPeNDAP server into ArcGIS format.

The Data Management tools perform common data manipula-
tion tasks such as finding, copying, and deleting files, directories,
and other data, extracting headers from geospatial data files, and
executing programs and database commands. While not directly

relevant to ecology, these tools fill important gaps in the collection
of general-purpose tools that come with ArcGIS.

The Spatial Analysis tools analyze and manipulate vector and
raster data and are useful in a variety of scenarios. For example,
MGET’s sampling tools intersect points with rasters or polygons
and write the values of the rasters’ cells or the polygons’ attributes
to fields of the points. By matching points to rasters by date, these
tools can extract the values of oceanographic parameters such as
sea surface temperature from remotely-sensed time-series data.
The extracted values can then be analyzed with MGET’s Create
Fishnet for Points tool, which produces grids that statistically
summarize the points contained by each cell.

JJ. Roberts et al. / Environmental Modelling & Software 25 (2010) 1197—1207 1201

The Oceanographic Analysis tools execute analytic algorithms on
oceanographic data sets to derive data useful for marine ecological
modeling and other research. For example, oceanographic fronts
have long been known to aggregate and attract marine organisms
(Mann and Lazier, 1996). MGET's Cayula—Cornillon Fronts tool
identifies fronts in sea surface temperature images using Cayula and
Cornillon’s(1992) single image edge detection algorithm. The output
can be used in combination with biological surveys to test whether
organisms are associated with fronts.

The Connectivity Analysis tools analyze the connectivity of
marine ecosystems. Currently, MGET includes only one such tool.
Using the method developed by Treml et al. (2008), this tool simu-
lates the dispersal of coral larvae from reefs by ocean currents using
an Eulerian advection—diffusion algorithm implemented in MATLAB
and outputs a graph structure representing the connections between
reefs. Researchers can then identify reefs of biological or conserva-
tion interest by analyzing the graph structure to find those that are
sources and sinks of larvae, are hydrodynamically isolated from
others, are stepping stones in the connectivity network, and so on.

The Statistics tools extend the statistical analysis and modeling
capabilities of R to ArcGIS users. From ArcGIS, users can easily
perform tasks like plotting density histograms and scatterplots,
fitting and evaluating statistical models, and executing arbitrary R
statements from the ArcGIS ModelBuilder. Section 4 below gives an
in-depth example of some of these tools.

The Data Products tools are Conversion, Data Management, and
analysis tools that are customized to specific widely-used oceano-
graphic data sets. Many of these are essentially pre-parameterized,
easier-to-use versions of the general-purpose tools described above.
For example, the Cayula—Cornillon Fronts in CoastWatch Image tool
detects fronts in National Oceanographic and Atmospheric Admin-
istration (NOAA) CoastWatch Advanced Very High Resolution Radi-
ometer (AVHRR) SST images by integrating the NOAA CoastWatch
Software Library and Utilities (Hollemans, 2008) with a customized
version of the MGET front detection tool described above.

4. Example application: predictive habitat modeling using
ArcGIS

The introduction of advanced GIS software and statistical
modeling techniques has spawned a burgeoning assortment of
spatially-explicit statistical approaches to ecology. One such
approach is predictive habitat modeling, in which the investigator
attempts to relate spatiotemporal observations of a species to
environmental conditions using statistics or other quantitative
techniques and then predicts the distribution of the species across
a region, timeframe, and range of environmental conditions. Many
variations on this approach have been presented in the ecology
literature (for a review, see Guisan and Zimmermann, 2000). In
this paper, we illustrate how to build a habitat model using point
observations of the presence or absence of a species using
a binomial generalized additive model (GAM, Hastie and
Tibshirani, 1990) that estimates the probability of species pres-
ence using oceanographic conditions as predictor variables. We
assess the model’s predictive performance using receiver oper-
ating characteristic (ROC) analysis (Metz, 1978) and then predict
maps of the species’ distribution by evaluating the model across
every pixel in a stack of satellite images. This approach has been
used to model the habitat of marine mammals (Redfern et al.,
2006), seabirds (Vilchis et al., 2006), and fish (Valavanis et al.,
2008), as well as many terrestrial fauna and flora (Guisan and
Zimmermann, 2000).

Our goal is to briefly illustrate how to implement this
modeling technique using tools present in MGET. To keep this
paper short, we do not provide a complete description of the

modeling technique, review all of the factors that must be
considered to apply it successfully, or specify the complete set of
parameters provided to the MGET tools. Also, we skipped some
steps that are recommended to arrive at a robust model (such as
the separation of the input data set into model calibration and
evaluation sets). For a detailed discussion of the technique and
recommended modeling steps, please consult the references
provided above.

4.1. Data

For this example, we used sightings of Atlantic spotted
dolphin (Stenella frontalis) recorded during a ship-based marine
mammal abundance survey conducted by the NOAA Southeast
Fisheries Science Center (SEFSC) in August and September of
1999 along the east coast of the United States (Roden, 1999).
Following standard NOAA protocols for ship-based line-transect
surveys, NOAA placed trained observers on the vessel’s flying
bridge and equipped them with high power binoculars. As the
ship progressed along a planned survey route, the observers
noted the times, locations, and species of marine mammals they
sighted.

For oceanographic variables, we used bathymetry, sea surface
temperature (SST), and chlorophyll density, all from remotely-
sensed data sets. We chose bathymetry because NOAA’'s most
recent stock assessment for the Western North Atlantic stock of
S. frontalis described its distribution in terms of depth: “Atlantic
spotted dolphins regularly occur in the inshore waters south of
Chesapeake Bay and near the continental shelf edge and conti-
nental slope waters north of this region” (Waring et al., 2007).
We chose SST because marine mammals are believed to be
adapted to specific temperature regimes (Stevick et al., 2002).
We chose chlorophyll density because the presence of algae may
indicate the presence of herbivorous fish and other species
preyed upon by dolphins. For bathymetry data, we used ETO-
PO2v2 (NGDC, 2006). For SST, we used daytime monthly images
for August and September 1999 from the AVHRR Pathfinder SST
data set (Casey and Evans, 2008). For chlorophyll, we used
monthly images from the SeaWiFS Level 3 data set (Feldman and
McClain, 2008).

4.2. Methods

4.2.1. Data acquisition and preparation

From the Ocean Biogeographic Information System—Spatial
Ecological Analysis of Megavertebrate Populations (OBIS—SEAMAP)
web portal (Halpin et al., 2006), we downloaded the “SEFSC
Atlantic surveys 1999” data set, consisting of two shapefiles: one of
lines representing the ship’s route while the marine mammal
observers were “on effort,” and one of points representing animals
observed along the route. We extracted the 75 points where
Atlantic spotted dolphins was observed (Fig. 3) and used these as
presence points in the habitat model. For absence points, we
generated 525 points along the effort lines, distributed randomly,
with the constraint that they be no closer than 20 km to any
presence point. (While this method for generating absence points
was very easy to implement in ArcGIS, alternative, more difficult
methods may yield more accurate models; see Redfern et al. (2006)
for further discussion.)

Next, we downloaded the three oceanographic data sets and
converted them with an MGET tool from their original formats to
raster formats compatible with ArcGIS. To keep this example
simple, we created a single raster for each predictor variable, rep-
resenting the average value of the variable for the duration of the
NOAA cruise (see Fig. 3). For bathymetry, a static variable, we just

1202 JJ. Roberts et al. / Environmental Modelling & Software 25 (2010) 1197—1207
80°W 75°W 80°W 75°W 80°W 75°W
z L 1 Ll 1 il 55 L1y z
g g
Bathymetry SST Chlorophyll

35°N

30°N

°C
-32
22
s — .
— T 1
80°W 75°W 80°W 75°W 80°W 75°W

Fig. 3. Data used in the Stenella frontalis habitat model. The three panels show the three oceanographic predictor variables used in the model, averaged over the months of August
and September 1999. The heavy line shows the track of the NOAA survey vessel while observers were on effort. The heavy dots show locations where observers spotted Stenella

frontalis.

used the ETOPO2v?2 raster. For SST and chlorophyll, we created 2-
month mean rasters by averaging the August and September
rasters. (By averaging the dynamic oceanographic variables in this
way, we created a model that is simple but that has low temporal
resolution. Higher resolution could be achieved by matching
presence and absence points to weekly or daily SST and chlorophyll
images.)

4.2.2. Model fitting, evaluation, and habitat prediction

After preparing the presence and absence points and predictor
variable rasters, we constructed an ArcGIS geoprocessing model
(Fig. 4) to perform the remaining steps of the analysis using tools
from MGET. First, we sampled the values of the predictor variable
rasters at the presence and absence points. Next, we constructed
density histograms (Fig. 5) showing the distribution of each vari-
able for the presence and absence points, to determine if the
presence points could be statistically separated from the absence
points using values of the variable, and to gain an understanding of
the variable’s distribution. Armed with this information, we fitted
the following binomial GAM, expressed here in R formula syntax,
using an MGET tool that invoked functions in the R mgcv package
(Wood and Augustin, 2002):

Presence ~ logl0 (Bathymetry) + s(SST) + s(loglO0
(Chlorophyll)) (1)

This model predicts dolphin presence as an additive multiple
regression of bathymetry, SST, and chlorophyll density with
a logarithm fit to bathymetry, a smoothed spline fit to SST, and
a smoothed spline fit to the logarithm of chlorophyll density (see
Section 4.3 below for discussion of these terms). To characterize the
shape of the influence of each predictor on the probability of
presence, we plotted each term against its fitted range of predictor
values (Fig. 6).

We assessed the model’s performance by plotting an ROC curve
(Fig. 7) using an MGET tool that invoked functions in the R rocr
package (Sing et al., 2005). ROC analysis assists the modeler in

selecting a cutoff value for classifying the model response,
a continuous probability ranging from 0 to 1, into a binary value of
either O or 1 (i.e. species absent or present). Response values less
than the cutoff value are classified as 0, the rest are classified as 1.
An ROC curve compares the rates of true positive predictions and
false positive predictions obtained from the model for all possible
cutoff values. The MGET tool, using the rocr package, identified the
cutoff value on the ROC curve that was closest to the point of
perfect classification (the upper left corner of the plot, where the
true positive rate is 1 and false positive rate is 0), and calculated
a variety of model performance statistics for this value.

Using the fitted model, we created a map showing the proba-
bility of presence predicted from the oceanographic rasters (Fig. 8).
We also created corresponding maps showing the estimated
standard errors of the prediction and the binary presence/absence
classification, produced by classifying the probability of presence
using the cutoff value selected during the ROC analysis. The binary
classification represents our prediction of Atlantic spotted dolphin
habitat for this region and time period.

4.3. Results

All three predictor variables appeared to be good candidates for
separating the presence points from the absence points. Because
bathymetry and chlorophyll were left-skewed, we log-transformed
them (log base 10) to produce a more even distribution for these
plots and the modeling procedure. For bathymetry, nearly all of the
presence points were clustered between 10 and 100 m while the
absence points were fairly evenly distributed (Fig. 5, left). In the
GAM, we fit a line to the log-transformed values of bathymetry. For
SST, most of the presence values were clustered between 27 and 30
°C, but some occurred at lower temperatures (Fig. 5, center). The
absence points displayed a bimodal distribution. Due to this
complexity, we fitted a spline smooth to SST in the GAM. For
chlorophyll, the presence points spiked around 0.5 mg m~3 (—0.3
on the log scale) while the absence points spiked at a lower value
and tailed off gradually to the right, encompassing the entire range

J.J. Roberts et al. / Environmental Modelling & Software 25 (2010) 1197—1207

Figure 3

Sample
Rasters

Density Density Density
Histogram Histogram Histogram Fit GAM
for Field for Field for Field
I - | Figure 6
Figure 5
Plot ROC
of Binary
Classification

Predict GAM
From Rasters

Figure 8

Fig. 4. ArcGIS geoprocessing model showing the analysis workflow for the Stenella frontalis habitat model. The four ovals at the top represent the inputs to the analysis. The boxes
represent MGET tools. The remaining ovals represent outputs produced by the tools. The inputs and some outputs are presented in other figures, as labeled in the workflow.

1204 JJ. Roberts et al. / Environmental Modelling & Software 25 (2010) 1197—1207

o h — Absences + | — Absences A FON — Absences
ol 0 -- Presences &1 —- Presences N © [-- Presences
] Y -
g H N
[=} ! \
) = § A
)
E Y £ P 2
8 -1 | \ 7] | ! 1]
I ' o o [l &
[\ v o | [
[= . 1 =] \ o
P
of L~ =
il
/_/_/\
ol S L, ol . 3 > |
e T T T T T T = T T T T T T T T T
10 15 20 25 30 35 23 24 25 26 27 28 29 30 -1.0 05 0.0 0.5

log(Bathymetry) SST log(Chlorophyll)

Fig. 5. Density histograms for the Stenella frontalis habitat model. Each panel shows the distribution of a particular predictor variable for the points where dolphins were present
(solid line) and the points where they were absent (dashed line).

of presence values (Fig. 5, right). This suggested that dolphin North Carolina, above the northern edge of the Gulf Stream current,

presence was most probable between a range of chlorophyll values. where temperatures and chlorophyll density were high enough to

To capture this correlation in the GAM, we fitted a spline smooth to slightly outweigh the negative effect of deep water.

the log-transformed values of chlorophyll. Regions of high standard error occurred close to shore and along
The GAM explained 56% of the null deviance and had an unbi- the edge of the continental shelf, where both presences and

ased risk estimator (UBRE) score of —0.63. The estimated p-values absences were observed but the sparse number of data points

for all model terms were significant (p < 0.02). Bathymetry showed provided weak statistical coverage of the oceanographic conditions

a negative correlation with dolphin presence that grew weaker at that occurred there (Fig. 8, center).

shallow depths (Fig. 6, left). SST showed a negative correlation at The binary classification map (Fig. 8, right) shows the regions

the coldest values, almost no correlation at mid-range values, and where the predicted probability of presence exceeded the cutoff
a positive correlation at the warmest values (Fig. 6, center). At value selected by the ROC analysis (0.155). The true positive rate, or

extreme warm or cold values the correlation became uncertain, due sensitivity, of the model for this value was 0.920, and the false
to the sparse number of points available for those temperatures. positive rate, or 1 minus the specificity, was 0.128.

Chlorophyll showed a negative correlation at the extremes, and

a positive correlation in between (Fig. 6, right). As with SST, 5. Lessons learned

correlation became uncertain at the extremes due to insufficient

data. The principal challenge we faced in creating MGET was an

A commonly-used summary statistic for ROC analysis is the area engineering problem, not a science problem: how do we build
under the ROC curve (AUC). A perfect model has a true positive rate a suite of geospatial ecology tools that are accessible to non-
of 1 and false positive rate of 0, yielding an AUC of 1. A model that programmers, that are modular and highly interoperable, and that
gives random predictions has the same true positive rate and false are cheap to build and deploy? Our solution was to integrate
positive rate, yielding an AUC of 0.5. Our model yielded an AUC of a number of different programming platforms and software pack-
0.959 (Fig. 7), indicating strong predictive power. ages, both commercial and free, into a unified framework, and

The highest predicted probability of dolphin presence occurred develop our tools on top of the framework. Here, we discuss some
in the southern part of the surveyed region, on the continental shelf of the engineering challenges we faced in attempting such a large
(Fig. 8, left). This area was shallow and warm, and had a moderate integration project.
density of chlorophyll. The probability remained above zero Early in the design process, we had to decide how we would
northward along the shelf but dropped to zero north of Chesapeake architect MGET tools so they could be invoked from ArcGIS. ArcGIS
Bay, as water temperatures dropped. Off the shelf, the probability provides several alternatives, such as the Python-based scripting
approached zero everywhere except east of the Outer Banks of approach that we selected, and the ArcObjects approach, which

= o o] , — <
ze e AR
7} s N
E e | E J—
g ot = o< L < > = o S A i
®] R/t B -7 =3
a R wn 4 g_ ,’ \\\
(=2 Seo [/ ’ .
S 2| TTteee_ . 0w 2/ s 3/
- = g / = /
1

L g / o
= ! =3
S & 81/ o §
5 / v
o L LT T (TR] [Y

T r - . LN NOREN 001000 RN DR ||

0 1000 2000 3000 23 24 25 26 27 28 29 30 -1.0 05 0.0 0.5

Bathymetry SST log(Chlorophyll)

Fig. 6. Partial residual plots for the GAM terms in the Stenella frontalis habitat model. Each panel plots the value of a model predictor variable (x axis) against the partial residuals
(y axis), i.e. the residuals after removing the effects of the other predictors. The dashed lines show the estimated 95% confidence limits. In the model, bathymetry was fitted
logarithmically, while SST and the log of chlorophyll were fitted with a spline smooth. The plots use the same y axis scale, so that the relative influence of predictors may be easily
compared. For the two spline plots, the y axis label indicates the estimated degrees of freedom.

JJ. Roberts et al. / Environmental Modelling & Software 25 (2010) 1197—1207 1205

o | 15
- T'J Sl e
Cutoff = 0.155 i
rd

= s L2
8 ’ °
© s o
o © i 8 3
2 ° , =i g
b /7
= y =

4
g < ,f ER
o ° V] c =
= ’ ©
Fd

= o P B

o ¥ 4 5

I, °©
s
oll- AUG = 0.959
= x=

T

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

Fig. 7. Receiver operating characteristic (ROC) plot for the Stenella frontalis habitat
model. The ROC curve is labeled with the cutoff value selected for classifying the
continuous probability of dolphin presence into a binary value. The plot also specifies
the area under the ROC curve (AUC).

involves writing programs in a compiled language such as C# on
top of the set of COM components that ArcGIS itself is built upon.
We selected the Python scripting approach because it allowed
faster development, had a lower learning curve, and was based on
open-source technologies. In particular, we liked that ArcGIS
provided the entire user interface (Ul) required for running Python-
based tools, freeing us from having to write any Ul code. But by
selecting this approach, we limited ourselves to the Ul offered by
ArcGIS. This Ul provides only a basic collection of graphical user
input elements, such as text boxes and drop-down menus. Conse-
quently, MGET tools cannot leverage sophisticated input elements,
such as clickable maps, tables of editable cells, and so on.

We encountered many problems trying to integrate so many
programming platforms. Platforms that initially appeared to be
fully compatible usually proved to be subtly incompatible. Often,

80°W 75°W 80°W
| |

not all of the data types available from one platform would be
available for the other. For example, Python natively offers only one
floating point numeric type (IEEE 754 double precision), while
MATLAB offers two (IEEE 754 single and double precision).
Although we could rely on previously-developed interoperability
packages such as win32com and rpy to translate data types, these
packages never provided all of the translations we required, forcing
us to write additional translation code. The worst case was date and
time data types, which were represented differently in each
programming language and never handled by the interoperability
packages.

Whenever we took a dependency on software written by
someone else, we always had to set aside time to fix compatibility
problems that surfaced when they released a new version of their
software. For example, when ArcGIS 9.3 was released, it included
a feature allowing Python-based tools such as MGET to run as part
of the ArcCatalog or ArcMap processes, rather than as a separate
process as was done in previous versions of ArcGIS. This feature was
intended to be a performance optimization and was enabled by
default. But ArcGIS 9.3 exhibited a subtle compatibility problem
with the then-current version of MATLAB (version 2007b): both
programs compiled a third-party library called xerces-c_2_7.
dl11, but because they used different compilers, their versions of
the library were incompatible with each other. As a result, MGET
tools that invoked MATLAB would not work with ArcGIS 9.3 until
we forced ArcGIS to run them as “out of process” tools.

Dependencies on other software proved risky because we could
never be sure of the level of support we would receive from their
developers or how well the software would be maintained in the
future. This risk existed both for large commercial package such as
ArcGIS and for small, free, open-source projects. In the case of
ArcGIS, we found that ESRI was unresponsive to our bug reports,
requiring us to develop many workarounds for bugs in ArcGIS. For
the open-source projects, the level of support and maintenance
varied according to the interest and availability of the original
author. In one case, the rpy package, the original developer ceased
participation in the project. Because rpy must be rebuilt whenever
a new version of R is released, we had to start building our own

75°W 80°W 75°W

£ I R M T PO I IS AR,
S :) S
Predicted Standard Binary
probability errors classification,
of presence cutoff = 0.155
4 | =
8] -
)]
; ;
. L z
(=T o
5] | &
R I
.0
00 o 00 L)
: T ———— —_—
80°W 75°W 80°W 75°W 80°W 75°W

Fig. 8. Predictions for the Stenella frontalis habitat model. The left plot shows the probability of Stenella frontalis presence predicted from the oceanographic rasters (Fig. 3) by the
GAM. The center plot shows the estimated standard errors for the prediction. The right plot shows a binary classification of the left plot using the cutoff value selected by the ROC
analysis. White pixels represent areas where no prediction was performed because the values of one or more oceanographic rasters were outside the ranges of values used to fit the

model.

1206 J.J. Roberts et al. / Environmental Modelling & Software 25 (2010) 1197—1207

private copy of rpy to ensure that MGET would be compatible with
future releases of R. (Recently, another developer released a new
package called rpy?2, but it is not fully compatible with the original
rpy, SO we must rewrite portions of MGET before we can use it.)

Each time we took a dependency on another package, we had to
write additional code for detecting whether the package was
installed and for installing it if it was missing. This code was usually
tedious and time consuming, although some programming plat-
forms provided built-in infrastructure that made it fairly easy. For
example, most R packages are distributed through the Compre-
hensive R Archive Network (CRAN) and can be downloaded and
installed by simply calling a few R functions. A similar infrastruc-
ture exists for Python, but it is not as widely adopted by package
developers. To work around this, we had to incorporate private
copies of Python packages directly into MGET, allowing them to be
installed by MGET’s own installation program.

A last notable problem we encountered was the difficulty of
debugging MGET tools that integrated multiple programming
languages. While each language provides interactive debuggers
that can step through each line of code, one at a time, most of these
require you to execute the code within the debugger itself. We
could rarely use these to debug MGET tools, which execute in
a considerably more complicated manner. For example, a typical
MGET tool that performs statistical analysis begins execution in an
ArcGIS process. ArcGIS loads the Python interpreter and invokes
MGET Python code, which loads the rpy module. rpy, written in C,
loads the R interpreter, which finally invokes the MGET tool’s R
code. As far as we know, in this situation, there is no easy way to
step through the R code with R’s interactive debugger. Our solution
to this problem was two-fold. First, we instrumented MGET with
extensive logging that chronicles the tool’'s execution in detail.
Second, we implemented exception handlers for each program-
ming environment that catch unhandled exceptions and report
detailed information about the problem. While not as effective as
interactive debugging, this solution provides us with enough
information to resolve many bugs. It can also be activated by MGET
users so they can send us a log whenever a problem occurs,
allowing us to diagnose the situation without accessing their
machines.

6. Conclusion

In this paper, we presented Marine Geospatial Ecology Tools
(MGET), a collection of modular software tools designed for ecol-
ogists who are familiar with GIS but have little experience with
computer programming. By integrating ArcGIS, Python, R, MATLAB,
and C++ through interoperability modules and code generation,
MGET allows tool developers to easily access the power of several
popular scientific programming platforms without having to write
tedious integration code. At the time of this writing, MGET con-
tained over 180 tools addressing problems such as converting
geospatial data from one format to another, identifying ecologically
relevant features in oceanographic images, modeling hydrody-
namic connectivity of coral reefs, sampling time-series raster data,
and building and evaluating predictive habitat models. Future
releases of MGET will include additional connectivity and oceano-
graphic analysis tools, as well as tools for analyzing fisheries and
animal movements.

To illustrate the use of several MGET tools in an analytic work-
flow, we developed a presence/absence habitat model for Atlantic
spotted dolphin (S. frontalis) sightings by sampling oceanographic
images, fitting a generalized additive model to the sampled values,
and predicting a map of the probability of dolphin presence by
processing the images through the fitted model. This example
showed how an ecologist can use MGET to accomplish a common

multivariate statistical modeling scenario from ArcGIS without doing
any statistical programming, while, behind the scenes, the MGET
tools leverage best-of-breed statistical functions available in R.

Finally, we reviewed our experience tackling the engineering
challenge of integrating ArcGIS, Python, R, MATLAB, and C++ into
a tool development framework. We learned that we could save
considerable development time by leveraging interoperability
packages developed by others, but that these dependencies
sometimes came with hidden costs, such as unanticipated coding
needed to address subtle compatibility problems, and risks, such as
poor support from the package developer. Also, we found it was
challenging to debug tools developed with the framework because
the flow of execution was usually too complicated to allow tradi-
tional interactive debuggers to be used. Others that attempt
projects with this level of integration should beware of these
problems.

Acknowledgements

We thank Dave Ullman and Stephanie Hansen for providing
example code for detecting SST fronts and geostrophic eddies.
Several MGET tools are based on those examples. We thank Michelle
Sims for providing example code and suggestions for improving
several statistical tools. We thank four anonymous reviewers for
providing suggestions that improved this manuscript. The devel-
opment of MGET was made possible by a grant from the David and
Lucile Packard Foundation, with additional support from NASA.
Finally, MGET was built atop a lot of software developed by others,
often for free. We acknowledge the generous contributions of these
developers, too numerous to list here, on the MGET web site.

References

Argent, RM., 2004. An overview of model integration for environmental applica-
tions—components, frameworks and semantics. Environmental Modelling &
Software 19, 219—-234.

Best, B.D., 2006a. ArcRstats: Multivariate Habitat Prediction Using ArcGIS and the
Open-source R Statistical Package. <http://mgel.env.duke.edu/tools>.

Best, B.D., 2006b. ConnMod: Connectivity Modeling Toolbox. <http://mgel.env.
duke.edu/tools>.

Best, B.D., 2007. Geospatial Modeling of Habitat and Connectivity. M.Sc. thesis. Duke
University, 67 pp.

Best, B.D., Halpin, P.N., Fujioka, E., Read, AJ., Qian, S.S., Hazen, L]., Schick, R.S., 2007.
Geospatial web services within a scientific workflow: predicting marine
mammal habitats in a dynamic environment. Ecological Informatics 2 (3),
210—223.

Casey, K.S., Evans, R., 2008. Global AVHRR 4 km SST for 1985—2005, Pathfinder v5.0,
NODC/RSMAS. NOAA National Oceanographic Data Center. <http://pathfinder.
nodc.noaa.gov> (accessed November 2008).

Cayula, J.-F, Cornillon, P, 1992. Edge detection algorithm for SST images. Journal of
Atmospheric and Oceanic Technology 9 (1), 67—80.

Dunn, D.C., Halpin, P.N., 2009. Filling a marine spatial planning data gap: rugosity as
a mesoscale proxy for hard-bottom habitat. Marine Ecology Progress Series 377,
1-11.

Dunn, D.C, Kot, C.Y.,, Halpin, PN, 2008. A comparison of methods to spatially
represent pelagic longline fishing effort in catch and bycatch studies. Fisheries
Research 92, 268—276.

ESRI, 2008. ArcGIS — A Complete Integrated System. Environmental Systems
Research Institute, Inc., Redlands, California. <http://esri.com/arcgis>.

Feldman, G.C., McClain, C.R., 2008. Ocean Color Web, SeaWiFS Reprocessing 5.2. In:
Kuring, N., Bailey, SW. (Eds.). NASA Goddard Space Flight Center. <http://
oceancolor.gsfc.nasa.gov/> (accessed November 2008).

GISJobs.com, 2008. Salary Survey. <http://www.gisjobs.com/survey> (accessed
October 2008).

Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in
ecology. Ecological Modelling 135, 147—186.

Halpin, P.N., Read, AJ., Best, B.D., Hyrenbach, K.D. Fujioka, E., Coyne, M.S.,
Crowder, LB., Freeman, S.A., Spoerri, C., 2006. OBIS—SEAMAP: developing
a biogeographic research data commons for the ecological studies of marine
mammals, seabirds, and sea turtles. Marine Ecology Progress Series 316,
239-246. <http://seamap.env.duke.edu>.

Hammond, M., da Silva, S., Coombs,].R., Cole, V., Immisch, L., Upole, R., Heller, T.,
Golden, T., Mick, T., 2008. Python for Windows Extensions. <http://sourceforge.
net/projects/pywin32/>.

JJ. Roberts et al. / Environmental Modelling & Software 25 (2010) 1197—1207 1207

Hastie, TJ., Tibshirani, RJ., 1990. Generalized Additive Models. Chapman and Hall/
CRC, Boca Raton, FL.

Hollemans, P, 2008. CoastWatch Software Library and Utilities v3.2.2. NOAA
National Environmental Satellite Data Information Service. <http://coastwatch.
noaa.gov/cwn/cw_software.html>.

Kieburtz, R.B., McKinney, L., Bell,].M., Hook, J., Kotov, A., Lewis,]., Oliva, D.P,
Sheard, T., Smith, I., Walton, L., 1996. A software engineering experiment in
software component generation. In: Proceedings of the 18th International
Conference on Software Engineering (ICSE '96). IEEE Computer Society Press,
Berlin, Germany.

Ludascher, B., Altintas, 1., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E.,
Tao, J., Zhao, Y., 2006. Scientific workflow management and the Kepler system.
Concurrency and Computation: Practice & Experience 18 (10), 1039—1065.

Mann, KH., Lazier, J.RN. 1996. Dynamics of Marine Ecosystems: Bio-
logical—Physical Interactions in the Oceans, second ed. Blackwell Science,
Cambridge, Massachusetts.

MathWorks, 2008. MATLAB — The Language of Technical Computing. The Math-
Works, Inc., Natick, Massachusetts. <http://mathworks.com/matlab>.

Metz, C.E., 1978. Basic principles of ROC analysis. Seminars in Nuclear Medicine 8,
283—298.

Moreira, W., Warnes, G., 2008. RPy: A Simple and Efficient Access to R from
PYTHON. <http://rpy.sourceforge.net/>.

NGDC, 2006. 2-Minute Gridded Global Relief Data (ETOPO2v2). NOAA National
Geophysical Data Center. <http://www.ngdc.noaa.gov/mgg/fliers/06mgg01.
html> (accessed November 2008).

Python Software Foundation, 2008. Python Programming Language. Python Soft-
ware Foundation, Hampton, New Hampshire. <http://python.org>.

R Development Core Team, 2008. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN
3-900051-07-0. <http://www.R-project.org>.

Redfern, J.V., Ferguson, M.C., Becker, E.A., Hyrenbach, K.D., Good, C., Barlow, J.,
Kaschner, K., Baumgartner, M.E, Forney, K.A., Ballance, LT., Fauchald, P,
Halpin, P,, Hamazaki, T., Pershing, A.J., Qian, S.S., Read, A., Reilly, S.B., Torres, L.,
Werner, F., 2006. Techniques for cetacean-habitat modeling. Marine Ecology
Progress Series 310, 271—-295.

Roden, C.,1999. Cruise Results; Summer Atlantic Ocean Marine Mammal Survey; NOAA
Ship Oregon II Cruise OT 99-05 (236). NOAA Southeast Fisheries Science Center.

Rogerson, D.E., 1997. Inside COM: Microsoft’s Component Object Model. Microsoft
Press, Redmond, Washington.

Schmitz, O., Karssenberg, D., van Deursen, W.P.A,, Wesseling, C.G., 2009. Linking
external components to a spatio-temporal modelling framework: coupling
MODFLOW and PCRaster. Environmental Modelling & Software 24, 1088—1099.

Sing, T., Sander, O., Beerenwinkel, N., Lengauer, T., 2005. ROCR: visualizing classifier
performance in R. Bioinformatics 21 (20), 3940—3941.

Stevick, P.T., McConnell, B,J, Hammond, P.S., 2002. Patterns of movement. In:
Hoelzel, AR. (Ed.), Marine Mammal Biology: An Evolutionary Approach.
Blackwell Science, Oxford.

Treml, E.A., Halpin, P.N., Urban, D.L, Pratson, LF, 2008. Modeling population
connectivity by ocean currents, a graph-theoretic approach for marine
conservation. Landscape Ecology 23, 19—36.

Valavanis, V.D., Pierce, G.J., Zuur, AF, Palialexis, A., Saveliev, A., Katara, ., Wang,].,
2008. Modelling of essential fish habitat based on remote sensing, spatial
analysis and GIS. Hydrobiologia 612, 5—20.

van Rossum, G., 2001. Making Types Look More Like Classes. Python PEP 252,
Version 56033. <http://www.python.org/dev/peps/pep-0252/>.

van Rossum, G., 2008. Extending Python with C or C++. In: Extending and
Embedding the Python Interpreter, Release 2.5.2. <http://www.python.org/doc/
2.5.2/ext/>.

Vilchis, L., Ballance, L.T,, Fiedler, P.C., 2006. Pelagic habitat of seabirds in the eastern
tropical Pacific: effects of foraging ecology on habitat selection. Marine Ecology
Progress Series 315, 279—292.

Waring, G.T., Josephson, E., Fairfield, C.P., Maze-Foley, K. (Eds.), 2007. U.S.Atlantic
and Gulf of Mexico Marine Mammal Stock Assessments — 2007. NOAA Technical
Memorandum NMFS NE 205, 415 pp.

Weigert, T., Dietz, P, 2003. Automated generation of marshaling code from high-
level specifications. In: Reed, R. (Ed.), SDL 2003: System Design. Lecture Notes
in Computer Science 2708. Springer-Verlag, Berlin.

Wood, S.N., Augustin, N.H., 2002. GAMs with integrated model selection using
penalized regression splines and applications to environmental modelling.
Ecological Modelling 157, 157—177.

