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Abstract

Recursive partitioning methods have become popular and widely used tools for non-

parametric regression and classification in many scientific fields. Especially random

forests, that can deal with large numbers of predictor variables even in the presence of

complex interactions, have been applied successfully in genetics, clinical medicine and

bioinformatics within the past few years.

High dimensional problems are common not only in genetics, but also in some areas

of psychological research, where only few subjects can be measured due to time or

cost constraints, yet a large amount of data is generated for each subject. Random

forests have been shown to achieve a high prediction accuracy in such applications, and

provide descriptive variable importance measures reflecting the impact of each variable

in both main effects and interactions.

The aim of this work is to introduce the principles of the standard recursive partitioning

methods as well as recent methodological improvements, to illustrate their usage for

low and high dimensional data exploration, but also to point out limitations of the

methods and potential pitfalls in their practical application.

Application of the methods is illustrated using freely available implementations in the

R system for statistical computing.
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Scope of This Work

Prediction, classification and the assessment of variable importance are fundamental tasks in

psychological research. A wide range of classical statistical methods – including linear and logistic

regression as the most popular representatives of standard parametric models – is available to

address these tasks. However, in certain situations these classical methods can be subject to

severe limitations.

One situation where parametric approaches are no longer applicable is the so called ”small n

large p” case, where the number of predictor variables p is greater than the number of subjects

n. This case is common, e.g., in genetics, where thousands of genes are considered as potential

predictors of a disease. However, even in studies with much lower numbers of predictor variables,

the combination of all main and interaction effects of interest – especially in the case of categorical

predictor variables – may well lead to cell counts too sparse for parameter convergence. Thus,

interaction effects of high order usually cannot be included in standard parametric models.

Additional limitations of many standard approaches include the restricted functional form of the

association pattern (with the linear model as the most common and most restrictive case), the fact

that ordinally scaled variables, which are particularly common in psychological applications, are

often treated as if they were measured on an interval or ratio scale, and that measures of variable

importance are only available for a small range of methods.

The aim of this paper is to provide an instructive review of a set of statistical methods adopted

from machine learning, that overcome these limitations.

The most important one of these methods is the so called “random forest” approach of Breiman

(2001a): A random forest is a so called ensemble (or set) of classification or regression trees (CART,

Breiman, Friedman, Olshen, and Stone 1984). Each tree in the ensemble is built based on the

principle of recursive partitioning, where the feature space is recursively split into regions contain-

ing observations with similar response values. A detailed explanation of recursive partitioning is

given in the next section.

In the past years, recursive partitioning methods have gained popularity as a means of multivari-

ate data exploration in various scientific fields, including, e.g., the analysis of microarray data,

DNA sequencing and many other applications in genetics, epidemiology and medicine (cf.,e.g.,

Gunther, Stone, Gerwien, Bento, and Heyes 2003; Lunetta, Hayward, Segal, and Eerdewegh 2004;

Segal, Barbour, and Grant 2004; Bureau, Dupuis, Falls, Lunetta, Hayward, Keith, and Eerdewegh

2005; Huang, Pan, Grindle, Han, Chen, Park, Miller, and Hall 2005; Shih, Seligson, Belldegrun,

Palotie, and Horvath 2005; Diaz-Uriarte and Alvarez de Andrés 2006; Qi, Bar-Joseph, and Klein-

Seetharaman 2006; Ward, Pajevic, Dreyfuss, and Malley 2006).

A growing number of applications of random forests in psychology indicates a wide range of ap-

plication areas in this field, as well: For example, Oh, Laubach, and Luczak (2003) and Shen,

Ong, Li, Hui, and Wilder-Smith (2007) apply random forests to neuronal ensemble recordings and

EEG data, that are too high-dimensional for the application of standard regression methods. An

alternative approach to cope with large numbers of predictor variables would be to first apply

dimension reduction techniques, such as principle components or factor analysis, and then use
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standard regression methods on the reduced data set. However, this approach has the disadvan-

tage that the original input variables are projected into a reduced set of components, so that

their individual effect is not longer identifiable. As opposed to that, random forests can process

large numbers of predictor variables simultaneously and provide individual measures of variable

importance.

Interesting applications of random forests in data sets of lower dimensionality include the studies of

Rossi, Amaddeo, Sandri, and Tansella (2005) on determinants of once-only contact in community

mental health service and Baca-Garcia, Perez-Rodriguez, Saiz-Gonzalez, Basurte-Villamor, Saiz-

Ruiz, Leiva-Murillo, de Prado-Cumplido, Santiago-Mozos, Artes-Rodriguez, and de Leon (2007)

on attempted suicide under consideration of the family history. For detecting relevant predictor

variables, Rossi et al. (2005) point out that the random forest variable importance ranking proves

to be more stable than stepwise variable selection approaches available for logistic regression, that

are known to be affected by order effects (see, e.g., Freedman 1983; Derksen and Keselman 1992;

Austin and Tu 2004). Moreover, a high random forest variable importance of a variable that was

not included in stepwise regression may indicate that the variable works in interactions that are

too complex to be captured by parametric regression models. As another advantage, Marinic,

Supek, Kovacic, Rukavina, Jendricko, and Kozaric-Kovacic (2007) point out in an application to

the diagnosis of posttraumatic stress disorder, that random forests can be used to automatically

generate realistic estimates of the prediction accuracy on test data by means of repeated random

sampling from the learning data.

Luellen, Shadish, and Clark (2005) explore another field of application in comparing the effects

in an experimental and a quasi-experimental study on mathematics and vocabulary performance:

When the treatment assignment is chosen as a working response, classification trees and ensemble

methods can be used to estimate propensity scores.

However, some of these seminal applications of recursive partitioning methods in psychology also

reveal common misperceptions and pitfalls: For example, Luellen et al. (2005) suspect that ensem-

ble methods could overfit (i.e., adapt too closely to random variations in the learning sample, as

discussed in detail below) when too many trees are used to build the ensemble – even though recent

theoretical results disprove this and indicate that other tuning parameters may be responsible for

overfitting in random forests.

More common mistakes in the practical usage and interpretation of recursive partitioning ap-

proaches are the confusion of main effects and interactions (see, e.g., Berk 2006) as well as the

application of biased variable selection criteria and a significance test for variable importance

measures (see, e.g., Baca-Garcia et al. 2007) that has recently been shown to have extremely poor

statistical properties.

Some of these pitfalls are promoted by the fact that random forests were not developed in a

stringent statistical framework, so that their properties are less predictable than those of standard

parametric methods, and some parts of random forests are still “under construction” (cf. also

Polikar 2006, for a brief history of ensemble methods, including fuzzy and Bayesian approaches).

Therefore the aim of this paper is not only to point out the potential of random forests and related
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recursive partitioning methods to a broad scientific community in psychology and related fields,

but also to provide a thorough understanding of how these methods function, how they can be

applied practically and when they should be handled with caution.

The next section describes the rationale of recursive partitioning methods, starting with single

classification and regression trees and moving on to ensembles of trees. Examples are interspersed

between the technical explanations and provided in an extra section to highlight potential areas of

application. A synthesis of important features and advantages of recursive partitioning methods

– as well as important pitfalls – with an emphasis on random forests is given in a later section.

For all examples shown here, freely available implementations in the R system for statistical com-

puting (R Development Core Team 2009) were employed. The corresponding code is provided and

documented in a supplement as an aid for new users.

The Methods

After the early seminal work on automated interaction detection by Morgan and Sonquist (1963)

the two most popular algorithms for classification and regression trees (abbreviated as classifica-

tion trees in most of the following), CART and C4.5, were introduced by Breiman et al. (1984) and

independently by Quinlan (1986, 1993). Their nonparametric approach and the straightforward

interpretability of the results have added much to the popularity of classification trees (cf., e.g.,

Hannöver, Richard, Hansen, Martinovich, and Kordy 2002; Kitsantas, Moore, and Sly 2007, for

applications on the treatment effect in patients with eating disorders and determinants of adoles-

cent smoking habits). As an advancement of single classification trees, random forests (Breiman

2001a), as well as its predecessor method bagging (Breiman 1996a, 1998), are so-called “ensemble

methods”, where an ensemble or committee of classification trees is aggregated for prediction.

This section introduces the main concepts of classification trees, that are then employed as so

called “base learners” in the ensemble methods bagging and random forests.

How Do Classification and Regression Trees Work?

Classification and regression trees are a simple nonparametric regression approach. Their main

characteristic is that the feature space, i.e. the space spanned by all predictor variables, is recur-

sively partitioned into a set of rectangular areas, as illustrated below. The partition is created

such that observations with similar response values are grouped. After the partition is completed,

a constant value of the response variable is predicted within each area.

The rationale of classification trees will be explained in more detail by means of a simple psycho-

logical example: Inspired by the study of Kitsantas et al. (2007) on determinants of adolescent

smoking habits, an artificial data set was generated for illustrating variable and split selection in

recursive partitioning.

Our aim is to predict the adolescents’ intention to smoke a cigarette within the next year (binary

response variable intention_to_smoke) from four candidate risk factors (the binary predictor

variables lied_to_parents, indicating whether the subject has ever lied to the parents about
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doing something they would not approve of, and friends_smoke, indicating peer smoking of one

or more among the four best friends, as well as the numeric predictor variables age, indicating

the age in years, and alcohol_per_month, indicating how many times the subject drank alcohol

in the past month).

The data were generated such as to resemble the key results of Kitsantas et al. (2007). However,

the variables age and alcohol_per_month, that are used only in a discretized form by Kitsantas

et al. (2007), were generated as numeric variables to illustrate the selection of optimal cutpoints

in recursive partitioning. The generated data set, as well as the R-code used for all examples, are

available as supplements.

The classification tree derived from the smoking data is illustrated in Figure 1 (left) and shows

the following: From the entire sample of 200 adolescents (represented by node 1 in Figure 1 (left),

where the node numbers are mere labels assigned recursively from left to right starting from the

top node), a group of 92 adolescents is separated from the rest in the first split. This group

(represented by node 2) is characterized by the fact that “none” of their four best friends smoke,

and that within this group only few subjects intend to smoke within the next year. The remaining

108 subjects are further split into two groups (nodes 4 and 5) according to whether they drank

alcohol in “one or less” or “more” occasions in the past month. These two groups again vary in the

percentage of subjects who intend to smoke.

The model can be displayed either as a tree, as in Figure 1 (left), or as a rectangular partition of

the feature space, as in Figure 1 (right): The first split in the variable friends_smoke partitions

the entire sample, while the second split in the variable alcohol_per_month further partitions

only those subjects whose value for the variable friends_smoke is ”one or more”. The partition

representation in Figure 1 (right) is even better suited than the tree representation to illustrate that

recursive partitioning creates nested rectangular prediction areas corresponding to the terminal

nodes of the classification tree. Details about the prediction rules derived from the partition are

given below.

Note that the resulting partition is one of the main differences between classification trees and,

e.g., linear regression models: While in linear regression the information from different predictor

variables is combined linearly, here the range of possible combinations includes all rectangular

partitions that can be derived by means of recursive splitting – including multiple splits in the

same variable. In particular, this includes nonlinear and even nonmonotone association rules, that

do not need to be specified in advance but are determined in a data driven way.

Of course there is a strong parallel between tree building and stepwise regression, where predictors

are also included one at a time in successive order. However, in stepwise linear regression the pre-

dictors still have a linear effect on the dependent variable, while extensions of stepwise procedures

including interaction effects are typically limited to the inclusion of two-fold interactions, since the

number of higher order interactions – that would have to be created simultaneously when starting

the selection procedure – is too large.

In contrast to this, in recursive partitioning only those interactions that are actually used in the

tree are generated during the fitting process. The issue of including main effects and interactions
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in recursive partitioning is discussed in more detail below.
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Figure 1: Partition of the smoking data by means of a binary classification tree. The tree

representation (left) corresponds to a rectangular recursive partition of the feature space

(right). In the terminal nodes of the tree, the dark and light grey shaded areas represent

the relative frequencies of “yes” and ”no” answers to the intention to smoke question in each

group respectively. The corresponding areas in the rectangular partition are shaded in the

color of the majority response.

Splitting and Stopping

Both the CART algorithm of Breiman et al. (1984) and the C4.5 algorithm (and its predecessor

ID3) of Quinlan (1986, 1993) conduct binary splits in numeric predictor variables, as depicted in

Figure 1. In categorical predictor variables (of nominal or ordinal scale of measurement) C4.5

produces as many nodes as there are categories (often referred to as “k-ary” or “multiple” split-

ting), while CART again creates binary splits between the ordered or unordered categories. We

concentrate on binary splitting trees in the following and refer to Quinlan (1993) for k-ary splitting.

For selecting the splitting variable and cutpoint, both CART and C4.5 follow the approach of

impurity reduction, that we will illustrate by means of our smoking data example: In Figure 2

the relative frequencies of both response classes are displayed not only for the terminal nodes,

but also for the inner nodes of the tree previously presented in Figure 1. Starting from the root

node, we find that the relative frequency of “yes” answers in the entire sample of 200 adolescents

is approximately 40%. By means of the first split, the group of 92 adolescents with the lowest

frequency of “yes” answers (approximately 15%, node 2) can be isolated from the rest, that have

a higher frequency of “yes” answers (almost 60%, node 3). These 108 subjects are then further

split to form two groups: one smaller group with a medium (approximately 30%, node 4) and one

larger group with a high (more than 60%, node 5) frequency of “yes” answers to the intention to

smoke question.
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Figure 2: Relative frequencies of both response classes in the inner nodes of the binary

classification tree for the smoking data. The dark and light grey shaded areas again represent

the relative frequencies of “yes” and ”no” answers to the intention to smoke in each group

respectively.

From this example we can see that, following the principle of impurity reduction, each split in the

tree building process results in daughter nodes that are more ”pure” than the parent node in the

sense that groups of subjects with a majority for either response class are isolated. The impurity

reduction achieved by a split is measured by the difference between the impurity in the parent

node and the average impurity in the two daughter nodes. Entropy measures, such as the Gini

Index or the Shannon Entropy, are used to quantify the impurity in each node. These entropy

measure have in common that they reach their minimum for perfectly pure nodes with the relative

frequency of one response class being zero and their maximum for an equal mixture with the same

relative frequencies for both response classes, as illustrated in Figure 3.

While the principle of impurity reduction is intuitive and has added much to the popularity of

classification trees, it can help our statistical understanding to think of impurity reduction as

merely one out of many possible means of measuring the strength of the association between

the splitting variable and the response. Most modern classification tree algorithms rely on this

strategy, and employ the p-values of association tests for variable and cutpoint selection. This

approach has additional advantages over the original impurity reduction approach, as outlined

below.

Regardless of the split selection criterion, however, in each node the variable that is most strongly

associated with the response variable (i.e., that produces the highest impurity reduction or the

lowest p-value) is selected for the next split. In splitting variables with more than two categories,

that offer more than one possible cutpoint, the optimal cutpoint is also selected with respect to

this criterion. In our example, the optimal cutpoint identified within the range of the numeric
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Figure 3: Gini index and Shannon entropy as functions of the relative frequency of one

response class. Pure nodes containing only observations of one class receive an impurity

value of zero, while mixed nodes receive higher impurity values.

predictor variable alcohol_per_month is between the values 1 and 2, because subjects who drank

alcohol in one or less occasions have a lower frequency of “yes” answers than those who drank

alcohol in 2 or more occasions.

After a split is conducted, the observations in the learning sample are divided into the different

nodes defined by the respective splitting variable and cutpoint, and in each node splitting continues

recursively until some stop condition is reached. Common stop criteria are: split until (a) all leaf

nodes are pure (i.e. contain only observations of one class) (b) a given threshold for the minimum

number of observations left in a node is reached or (c) a given threshold for the minimum change

in the impurity measure is not succeeded any more by any variable. Recent classification tree

algorithms also provide statistical stopping criteria that incorporate the distribution of the splitting

criterion (Hothorn, Hornik, and Zeileis 2006), while early algorithms relied on pruning the complete

tree to avoid overfitting.

The term overfitting refers to the fact that a classifier that adapts too closely to the learning

sample will not only discover the systematic components of the structure that is present in the

population, but also the random variation from this structure that is present in the learning data

due to random sampling. When such an overfitted model is later applied to a new test sample from

the same population, its performance will be poor because it does not generalize well. However,

it should be noted that overfitting is an equally relevant issue in parametric models: With every

variable, and thus every parameter, that is added to the regression model, its fit to the learning

data improves, because the model becomes more flexible.

This is evident, e.g., in the R2 statistic reflecting the portion of variance explained by the model,

that increases with every parameter added to the model. For example, in the extreme case where

as many parameters as observations are available, any parametric model will show a perfect fit on

the learning data, yielding a value of R2 = 1, but will perform poorly in future samples.

In parametric models, a common strategy to deal with this problem is to use significance tests for
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variable selection in regression models. However, one should be aware that in this case significance

tests do not work in the same way as in a designed study, where a limited number of hypotheses

to be tested are specified in advance. In common forward and/or backward stepwise regression it

is not known beforehand how many significance tests will have to be conducted. Therefore, it is

hard to control the overall significance level, that controls the probability of falsely declaring at

least one of the coefficients as significant.

Advanced variable selection strategies, that have been developed for parametric models, employ

model selection criteria such as the AIC and BIC, that include a penalization term for the number

of parameters in the model. For a detailed discussion of approaches that account for the complexity

of parametric models see Burnham and Anderson (2002) or Burnham and Anderson (2004).

Since information criteria such as the AIC and BIC are, however, not applicable to nonparametric

models (see, e.g., Claeskens and Hjort 2008), in recursive partitioning the classic strategy to cope

with overfitting is to “prune” the trees after growing them, which means that branches that do

not add to the prediction accuracy in cross validation are eliminated. Pruning is not discussed

in detail here, because the unbiased classification tree algorithm of Hothorn et al. (2006), that is

used here for illustration, employs p-values for variable selection and as a stopping criterion and

therefore does not rely on pruning. In addition to this, ensemble methods, that are our main focus

here, usually employ unpruned trees.

Prediction and Interpretation of Classification and Regression Trees

Finally a response class is predicted in each terminal node of the tree (or each rectangular section

in the partition respectively) by means of deriving from all observations in this node either the

average response value in regression or the most frequent response class in classification trees. Note

that this means that a regression tree creates a piecewise (or rectangle-wise for two dimensions

and cuboid-wise in higher dimensions) constant prediction function.

Even though the idea of piecewise constant functions may appear very inflexible, such functions can

be used to approximate any functional form, in particular nonlinear and nonmonotone functions.

This is in strong contrast to classical linear or additive regression, where the effects of predictors

are restricted to the additive form – the interpretation of which may appear easier, but which

may also produce severe artifacts, since in many complex applications the true data generating

mechanism is neither linear nor additive. We will see later that ensemble methods, by combining

the predictions of many single trees, can approximate functions more smoothly, too.

The predicted response classes in our example are the majority class in each node in Figure 1

(left), as indicated by the shading in Figure 1 (right): Subjects who have not lied to their parents

as well as those who have lied to their parents but drank alcohol in one or less occasions are not

likely to intend to smoke, while those who have lied to their parents and drank alcohol in 2 or

more occasions are likely to intend to smoke within the next year.

For classification problems it is also possible to predict an estimate of the class probabilities

from the relative frequencies of each class in the terminal nodes. In our example, the predicted

probabilities for answering “yes” to the intention to smoke question would thus be approximately
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Figure 4: Classification trees based on variations of the smoking data with two main effects

(left) and interactions (right). The tree depicted in Figure 1 based on the original data also

represents an interaction.

15%, 30% and 65% in the three groups – which may preserve more information than the majority

vote that merely assigns the class with a relative frequency of > 50% as the prediction.

Reporting the predicted class probabilities more closely resembles the output of logistic regression

models and can also be employed for estimating treatment probabilities or propensity scores. Note,

however, that no confidence intervals are available for the estimates, unless, e.g., bootstrapping is

used in combination with refitting to assess the variability of the prediction.

The easy interpretability of the visual representation of classification trees, that we have illustrated

in this example, has added much to the popularity of this method, e.g., in medical applications.

However, the downside of this apparently straightforward interpretability is that the visual repre-

sentation may be misguiding, because the actual statistical interpretation of a tree model is not

trivial. Especially the notions of main effects and interactions are often used rather incautiously

in the literature, as seems to be the case in Berk (2006, p. 272), where it is stated that a branch

that is not split any further indicated a main effect. However, when in the other branch created by

the same variable splitting continues, as is the case in the example of Berk (2006), this statement

is not correct.

The term “interaction” commonly describes the fact that the effect of one predictor variable, in

our example alcohol_per_month, on the response depends on the value of another predictor

variables, in our example friends_smoke. For classification trees this means that, if in one branch

created by friends_smoke it is not necessary to split in alcohol_per_month, while in the other

branch created by friends_smoke it is necessary, as in Figure 1 (left), an interaction between

friends_smoke and alcohol_per_month is present.

We will further illustrate this important issue and source of misinterpretations by means of varying

the effects in our artificial data set. The resulting classification trees are given in Figure 4. Only
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the left plot in Figure 4, where the effect of alcohol_per_month is the same in both branches cre-

ated by friends_smoke, represents two main effects of alcohol_per_month and friends_smoke

without an interaction: The main effect of friends_smoke shows in the higher relative frequen-

cies of “yes” answers in nodes 6 and 7 as compared to nodes 3 and 4. The main effect of al-

cohol_per_month shows in the higher relative frequencies of “yes” answers in nodes 4 and 7 as

compared to nodes 3 and 6 respectively.

As opposed to that, both the right plot in Figure 4 and the original plot in Figure 1 represent

interactions, because the effect of alcohol_per_month is different in both branches created by

friends_smoke. In the right plot in Figure 4 the same split in alcohol_per_month is conducted

in every branch created by friends_smoke, but the effect on the relative frequencies of the response

classes is different: for those subjects who have no friends that smoke, the relative frequency of a

“yes” answer is higher if they drank alcohol in 2 or more occasions (node 4 as compared to node

3), while for those who have one or more friends that smoke, the frequency of a “yes” answer is

lower if they drank alcohol in 2 or more occasions (node 7 as compared to node 6). This example

represents a typical interaction effect as known from standard statistical models, where the effect

of alcohol_per_month depends on the value of friends_smoke.

In the original plot in Figure 1 on the other hand, the effect of alcohol_per_month is also different

in both branches created by friends_smoke, because alcohol_per_month has an effect only in

the right branch, but not in the left branch.

While this kind of “asymmetric” interaction is very common in classification trees, it is extremely

unlikely to actually discover a symmetric interaction pattern as that in Figure 4 (right) or even a

main effect pattern as that in Figure 4 (left) in real data.

The reason for this is that, even if the true distribution of the data in both branches was very

similar, due to random variations in the sample and the deterministic variable and cutpoint selec-

tion strategy of classification trees, it is extremely unlikely that the same splitting variable – and

also the exact same cutpoint – would be selected in both branches. However, even a slightly dif-

ferent cutpoint in the same variable would, strictly speaking, represent an interaction. Therefore

it is stated in the literature that classification trees cannot (or rather, are extremely unlikely to)

represent additive functions that consist only of main effects, while they are perfectly well suited

for representing complex interactions.

For exploratory data analysis, further means for illustrating the effects of particular variables in

classification trees are provided by the partial dependence plots described in Hastie, Tibshirani,

and Friedman (2001, 2009) and the CARTscans toolbox (Nason, Emerson, and Leblanc 2004).

Model-Based Recursive Partitioning

A variant of recursive partitioning, that can also be a useful aid for visual data exploration, is

model based recursive partitioning. Here the idea is to partition the feature space not such as

to identify groups of subjects with similar values of the response variable, but groups of subjects

with similar association patterns, e.g., between another predictor variable and the response.

For example, linear regression could be used to model the dependence of a clinical response on
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the dose of medication. However, the slope and intersect parameters of this regression may be

different for different groups of patients: elderly patients, e.g., may show a stronger reaction to the

medication, so that the slope of their regression line would need to be steeper than that of younger

patients. In this example, the model of interest is the regression between dose of medication and

clinical response – however, the model parameters should be chosen differently in the two (or more)

groups defined by the covariate age. Another example and visualization are given in the section

“Further application examples”.

The model based recursive partitioning approach of Zeileis, Hothorn, and Hornik (2008) offers

a way to partition the feature space in order to detect parameter instabilities in the parametric

model of interest by means of a structural change test framework. Similarly to latent class or

mixture models, the aim of model based partitioning is to identify groups of subjects for which

the parameters of the parametric model differ. However, in model based partitioning the groups

are usually not defined by a latent factor, but by combinations of observed covariates, that are

searched heuristically. Thus, model based partitioning can offer a heuristic but easy to interpret

alternative to latent class – as well as random or mixed effects – models.

An extension of model based partitioning for Bradley-Terry models is suggested by Strobl, Wick-

elmaier, and Zeileis (2009). An application to mixed models, including the Rasch Model as a

special case (as a generalized linear mixed model, see Rijmen, Tuerlinckx, Boeck, and Kuppens

2003; Doran, Bates, Bliese, and Dowling 2007), is currently investigated by Sanchez-Espigares and

Marco (2008).

What is Wrong with Trees?

The main flaw of simple tree models is their instability to small changes in the learning data: In

recursive partitioning, the exact position of each cutpoint in the partition, as well as the decision

which variable to split in, determines how the observations are split up in new nodes, in which

splitting continues recursively. However, the exact position of the cutpoint, as well as the selection

of the splitting variable, strongly depend on the particular distribution of observations in the

learning sample.

Thus, as an undesired side effect of the recursive partitioning approach, the entire tree structure

could be altered if the first splitting variable, or only the first cutpoint, was chosen differently due

to a small change in the learning data. Due to this instability, the predictions of single trees show

a high variability.

The high variability of single trees can be illustrated, e.g., by drawing bootstrap samples from

the original data set and investigating whether the trees built on the different samples have a

different structure. The rationale of bootstrap samples, where a sample of the same size as the

original sample is drawn with replacement (so that some observations are left out, while others

may appear more than once in the bootstrap sample) is to reflect the variability inherent in any

sampling process: Random sampling preserves the systematic effects present in the original sample

or population, but in addition to this it induces random variability. Thus, if classification trees

built on different bootstrap samples vary too strongly in their structure, this proves that their
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Figure 5: Classification trees based on four bootstrap samples of the smoking data, illus-

trating the instability of single trees.

interpretability can be severely affected by the random variability present in any data set.

Classification trees built on four bootstrap samples drawn from our original smoking data are

displayed in Figure 5. Apparently, the effect of the variable friends_smoke is strong enough to

remain present in all four trees, while the further splits vary strongly with the sample.

As a solution to the problem of instability, the average over an ensembles of trees, rather than

a single tree, is used for prediction in ensemble methods, as outlined in the following. Another

problem of single trees, that is solved by the same model averaging approach, is that the prediction

of single trees is piecewise constant and thus may“jump” from one value to the next even for small

changes of the predictor values. As described in the next section, ensemble methods have the

additional advantage, that their decision boundaries are more smooth than those of single trees.

How Do Ensemble Methods Work?

The rationale behind ensemble methods is to base the prediction on a whole set of classification or

regression trees, rather than a single tree. The related methods bagging and random forests vary

only in the way this set of trees is constructed.
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Figure 6: Classification trees (grown without stopping or pruning) based on four bootstrap

samples of the smoking data, illustrating the principle of bagging.

Bagging

In both bagging and random forests a set of trees is built on random samples of the learning

sample: In each step of the algorithm, either a bootstrap sample (of the same size, drawn with

replacement) or a subsample (of smaller size, drawn without replacement) of the learning sample is

drawn randomly, and an individual tree is grown on each sample. As outlined above, each random

sample reflects the same data generating process but differs slightly from the original learning

sample due to random variation. Keeping in mind that each individual classification tree depends

highly on the learning sample as outlined above, the resulting trees can thus differ substantially.

Another feature of the ensemble methods bagging and random forests is that usually trees are

grown very large, without any stopping or pruning involved. As illustrated again for four bootstrap

samples from the smoking data in Figure 6, large trees can become even more diverse and include

a large variety of combinations of predictor variables.

By combining the prediction of such a diverse set of trees, ensemble methods utilize the fact that

classification trees are instable but on average produce the right prediction (i.e. trees are unbiased
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predictors), which has been supported by several empirical as well as simulation studies (cf., e.g.,

Breiman 1996a, 1998; Bauer and Kohavi 1999; Dietterich 2000) and especially the theoretical

results of Bühlmann and Yu (2002), that show the superiority in prediction accuracy of bagging

over single classification or regression trees: Bühlmann and Yu (2002) could show by means of

rigorous asymptotic methods that the improvement in the prediction is achieved by means of

smoothing the hard cut decision boundaries created by splitting in single classification trees, which

in return reduces the variance of the prediction (see also Biau, Devroye, and Lugosi 2008). The

smoothing of hard decision boundaries also makes ensembles more flexible than single trees in

approximating functional forms that are smooth rather than piecewise constant.

Grandvalet (2004) also points out that the key effect of bagging is that it equalizes the influence

of particular observations – which proves beneficial in the case of “bad” leverage points, but may

be harmful when “good” leverage points, that could improve the model fit, are downweighted. The

same effect can be achieved not only by means of bootstrap sampling as in standard bagging, but

also by means of subsampling (Grandvalet 2004), that is preferable in many applications because

it guarantees unbiased variable selection (Strobl, Boulesteix, Zeileis, and Hothorn 2007, see also

section “Bias in variable selection and variable importance”). Ensemble construction can also be

viewed in the context of Bayesian model averaging (cf., e.g., Domingos 1997; Hoeting, Madigan,

Raftery, and Volinsky 1999, for an introduction). For random forests, which we will consider in the

next section, Breiman (2001a, p. 25) states that they may also be viewed as a Bayesian procedure

(and continues: “Although I doubt that this is a fruitful line of exploration, if it could explain the

bias reduction, I might become more of a Bayesian.”).

Random Forests

In random forests another source of diversity is introduced when the set of predictor variables to

select from is randomly restricted in each split, producing even more diverse trees. The number

of randomly preselected splitting variables, termed mtry in most algorithms, as well as the overall

number of trees, usually termed ntree, are parameters of random forests that affect the stability

of the results and will be discussed further in section “Features and pitfalls”. Obviously random

forests include bagging as the special case where the number of randomly preselected splitting

variables is equal to the overall number of variables.

Intuitively speaking, random forests can improve the predictive performance even further as com-

pared to bagging, because the single trees involved in averaging are even more diverse. From a

statistical point of view, this can be explained by the theoretical results presented by Breiman

(2001a), that the upper bound for the generalization error of an ensemble depends on the correla-

tion between the individual trees, such that a low correlation between the individual trees results

in a low upper bound for the error.

In addition to the smoothing of hard decision boundaries, the random selection of splitting vari-

ables in random forests allows predictor variables, that were otherwise outplayed by a stronger

competitor, to enter the ensemble: If the stronger competitor cannot be selected, a new variable

has a chance to be included in the model – and may reveal interaction effects with other variables

that otherwise would have been missed.
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Figure 7: Classification trees (grown without stopping or pruning and with a random pres-

election of 2 variables in each split) based on four bootstrap samples of the smoking data,

illustrating the principle of random forests

The effect or randomly restricting the splitting variables is again illustrated by means of four

bootstrap samples drawn from the smoking data: In addition to growing a large tree on each

bootstrap sample, as in bagging, now the variable selection is limited to mtry=2 randomly prese-

lected candidates in each split. The resulting trees are displayed in Figure 7: We find that, due to

the random restriction, the trees have become even more diverse; for example the strong predictor

variable friends_smoke is no longer chosen for the first split in every single tree.

The reason why even suboptimal splits in weaker predictor variables can often improve the pre-

diction accuracy of an ensemble is that the split selection process in regular classification trees is

only locally optimal in each node: A variable and cutpoint are chosen with respect to the impurity

reduction they can achieve in a given node defined by all previous splits, but regardless of all splits

yet to come.

Thus, variable selection in a single tree is affected by order effects similar to those present in step-

wise variable selection approaches for parametric regression (that is also instable against random

variation of the learning data, as pointed out by Austin and Tu 2004). In both recursive partition-
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ing and stepwise regression, the approach of adding one locally optimal variable at a time does not

necessarily (or rather hardly ever) lead to the globally best model over all possible combinations

of variables.

Since, however, searching for a single globally best tree is computationally infeasible (a first ap-

proach involving dynamic programming was introduced by van Os and Meulman 2005), the random

restriction of the splitting variables provides an easy and efficient way to generate locally subopti-

mal splits that can improve the global performance of an ensemble of trees. Alternative approaches

that follow this rationale by introducing even more sources of randomness are outlined below.

Besides intuitive explanations for “how ensemble methods work”, recent publications have con-

tributed to a deeper understanding of the statistical background behind many machine learning

methods: The work of Bühlmann and Yu (2002) provided the statistical framework for bagging,

Friedman, Hastie, and Tibshirani (2000) and Bühlmann and Yu (2003) for the related method

boosting and, most recently, Lin and Jeon (2006) and Biau et al. (2008) for random forests. In

their work Lin and Jeon (2006) explore the statistical properties of random forests by means of

placing them in a k-nearest neighbor (k-NN) framework, where random forests can be viewed

as adaptively weighted k-NN with the terminal node size determining the size of neighborhood.

However, in order to be able to mathematically grasp a computationally complex method like

random forests, involving several degrees of random sampling, several simplifying assumptions are

necessary. Therefore well planned simulation studies still offer valuable assistance for evaluating

statistical aspects of the method in its original form.

Alternative Ensemble Methods

Alternative approaches for building ensembles of trees with a strong randomization component are

the random split selection approach of Dietterich (2000), where cutpoints from a set of optimal

candidates are randomly selected, and the perfect random trees approach of Cutler (1999) and

Cutler (2000), where both the splitting variable and the cutpoint are chosen randomly for each

split.

Another very intuitive approach, that resides somewhere in between single classification trees

and the ensemble methods we have covered so far, is TWIX (Potapov 2007; Potapov, Theus, and

Urbanek 2006). Here the building of the tree ensemble starts in a single starting node but branches

to a set of trees at each decision by means of splitting not only in the best cutpoint but also in

reasonable extra cutpoints. A data driven approach for selecting extra cutpoints is suggested in

Strobl and Augustin (2009).

However, while the approaches involving a strong randomization component manage to overcome

local optimality as outlined above, the TWIX approach is limited to a sequence of locally optimal

splits. It has been shown to outperform single trees and even to reach the predictive performance

of bagging, but in general cannot compete because it becomes computationally infeasible for large

sets of trees that are standard in today’s ensemble methods.
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Predictions from Ensembles of Trees

In an ensemble of trees the predictions of all individual trees need to be combined. This is

usually accomplished by means of (weighted or unweighted) averaging in regression or voting in

classification.

The term “voting” can be taken literally here: Each subject with given values of the predictor

variables is “dropped through” every tree in the ensemble, so that each single tree returns a

predicted class for the subject. The class that most trees “vote” for is returned as the prediction

of the ensemble. This democratic voting process is the reason why ensemble methods are also

called “committee” methods. Note, however, that there is no diagnostic for the unanimity of the

vote. For regression and for predicting probabilities, i.e. relative class frequencies, the results of

the single trees are averaged; some algorithms also employ weighted averages. A summary over

several aggregation schemes is given in Gatnar (2008). However, even with the simple aggregation

schemes used in the standard algorithms, ensembles methods reliably outperform single trees and

many other advanced methods (examples of benchmark studies are given in the discussion).

Aside from the issue of aggregation, for bagging and random forests there are two different pre-

diction modes: ordinary prediction and the so called out-of-bag prediction. While in ordinary

prediction each observation of the original data set – or a new test data set – is predicted by the

entire ensemble, out-of-bag prediction follows a different rationale: Remember that each tree is

built on a bootstrap sample, that serves as a learning sample for this particular tree. However,

some observations, namely the out-of-bag observations, were not included in the learning sample

for this tree. Therefore, they can serve as a “built-in” test sample for computing the prediction

accuracy of that tree.

The advantage of the out-of-bag error is that it is a more realistic estimate of the error rate that is

to be expected in a new test sample, than the naive and over-optimistic estimate of the error rate

resulting from the prediction of the entire learning sample (Breiman 1996b) (see also Boulesteix,

Strobl, Augustin, and Daumer (2008) for a review on resampling-based error estimation). The

standard and out-of-bag prediction accuracy of a random forests with ntree=500 and mtry=2

for our smoking data example is 74.5% and 71.5% respectively, where the out-of-bag prediction

accuracy is more conservative.

In our artificial example, bagging, and even a single tree, would actually perform equally well,

because the interaction of friends_smoke and alcohol_per_month, that was already correctly

identified by the single tree, is the only effect that was induced in the data.

However, in most real data applications – especially in cases where many predictor variables work

in complex interactions – the prediction accuracy of random forests is found to be higher than for

bagging, and both ensemble methods usually highly outperform single trees.

Variable Importance

As described in the previous sections, single classification trees are easily interpretable, both

intuitively at first glance and descriptively when looking in detail at the tree structure. In particular

variables that are not included in the tree did not contribute to the model – at least not in the
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context of the previously chosen splitting variables.

As opposed to that, ensembles of trees are not easy to interpret at all, because the individual trees

in them are not nested in any way: Each variable may appear at different positions, if at all, in

different trees, as depicted in Figures 6 and 7, so that there is no such thing as an “average tree”

that could be visualized for interpretation.

On the other hand, an ensemble of trees has the advantage that it gives each variable the chance

to appear in different contexts with different covariates, and can thus better reflect its potentially

complex effect on the response. Moreover, order effects induced by the recursive variable selection

scheme employed in constructing the single trees are eliminated by averaging over the entire

ensemble. Therefore, in bagging and random forests variable importance measures are computed

to assess the relevance of each variable over all trees of the ensemble.

In principle, a possible naive variable importance measure would be to merely count the number

of times each variable is selected by all individual trees in the ensemble. More elaborate variable

importance measures incorporate a (weighted) mean of the individual trees’ improvement in the

splitting criterion produced by each variable (Friedman 2001). An example for such a measure

in classification is the “Gini importance” available in random forest implementations. It describes

the average improvement in the “Gini gain” splitting criterion that a variable has achieved in

all of its positions in the forest. However, in many applications involving predictor variables of

different types, this measure is biased, as outlined in section“Bias in variable selection and variable

importance”.

The most advanced variable importance measure available in random forests is the “permutation

accuracy importance” measure (termed permutation importance in the following). Its rationale is

the following: By randomly permuting the values of a predictor variable, its original association

with the response is broken.

For example, in the original smoking data, those adolescents who drank alcohol in more occasions

are more likely to intend to smoke. Randomly permuting the values of alcohol_per_month

over all subjects, however, destroys this association. Accordingly, when the permuted variable,

together with the remaining unpermuted predictor variables, is now used to predict the response,

the prediction accuracy decreases substantially.

Thus, a reasonable measure for variable importance is the difference in prediction accuracy (i.e.

the number of observations classified correctly; usually the out-of-bag prediction accuracy is used

to compute the permutation importance) before and after permuting a variable, averaged over all

trees.

If, on the other hand, the original variable was not associated with the response, it is either not

included in the tree (and its importance for this tree is zero by definition), or it is included in

the tree by chance. In the latter case, permuting the variable results only in a small random

decrease in prediction accuracy, or the permutation of an irrelevant variable can even lead to a

small increase in the prediction accuracy (if, by chance, the permutated variable happens to be

slightly better suited for splitting than the original one). Thus the permutation importance can

even show (small) negative values for irrelevant predictor variables, as illustrated for the irrelevant
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Figure 8: Permutation variable importance scores for the predictor variables of the smoking

data from bagging and random forests.

predictor variables age and lied_to_parents in Figure 8.

Note also that in our simple example the two relevant predictor variables friends_smoke and

alcohol_per_month are correctly identified by the permutation variable importance of both bag-

ging and random forests, even though the positions of the variables vary more strongly in random

forests (cf. again Figures 6 and 7). In real data applications, however, the random forest variable

importance may reveal higher importance scores for variables working in complex interactions,

that may have gone unnoticed in single trees and bagging (as well as in parametric regression

models, where modeling high-order interactions is usually not possible at all).

Formally the permutation importance for classification can be defined as follows: Let B
(t)

be the

out-of-bag sample for a tree t, with t ∈ {1, . . . , ntree}. Then the importance of variable Xj in

tree t is

VI (t)(Xj) =

∑
i∈B

(t) I
(
yi = ŷ

(t)
i

)
∣∣∣B(t)

∣∣∣ −

∑
i∈B

(t) I
(
yi = ŷ

(t)
i,ψj

)
∣∣∣B(t)

∣∣∣ (1)

where ŷ
(t)
i = f (t)(xi) is the predicted class for observation i before and ŷ

(t)
i,ψj

= f (t)(xi,ψj
) is

the predicted class for observation i after permuting its value of variable Xj , i.e. with xi,ψj
=(

xi,1, . . . , xi,j−1, xψj(i),j , xi,j+1, . . . , xi,p
)
. (Note that VI (t)(Xj) = 0 by definition, if variable Xj

is not in tree t.) The raw importance score for each variable is then computed as the average

importance over all trees

VI (Xj) =
∑ntree
t=1 VI (t)(Xj)

ntree
. (2)

From this raw importance score a standardized importance score can be computed with the fol-

lowing rationale: The individual importance scores VI (t)(xj) are computed from ntree bootstrap
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samples, that are independent given the original sample, and are identically distributed. Thus,

if each individual variable importance VI (t) has standard deviation σ, the average importance

from ntree replications has standard error σ/
√
ntree. The standardized or scaled importance,

also called “z-score”, is then computed as

z(xj) =
VI (xj)

σ̂√
ntree

. (3)

When the central limit theorem is applied to the mean importance VI (xj), Breiman and Cutler

(2008) argue that the z-score is asymptotically standard normal. This property is often used for

a statistical test, that, however, shows very poor statistical properties as outlined in the section

on “Features and pitfalls”.

As already mentioned, the main advantage of the random forest permutation accuracy importance,

as compared to univariate screening methods, is that it covers the impact of each predictor variable

individually as well as in multivariate interactions with other predictor variables. For example

Lunetta et al. (2004) find that genetic markers relevant in interactions with other markers or

environmental variables can be detected more efficiently by means of random forests than by

means of univariate screening methods like Fisher’s exact test.

This, together with its applicability to problems with many predictor values, also distinguishes the

random forest variable importance from the otherwise appealing approach of Azen, Budescu, and

Reiser (2001) and advanced in Azen and Budescu (2003) for assessing the criticality of a predictor

variable, termed “dominance analysis”: The authors suggest employing bootstrap sampling and

select the best regression model from all possible models for each bootstrap sample in order

to estimate the empirical probability distribution of all possible models. From this empirical

distribution for each variable the unweighted or weighted sum of probabilities associated with all

models containing the predictor is computed and suggested as an intuitive measure of variable

importance. This approach, where for p predictor variables 2p − 1 models are fitted in each

bootstrap iteration, has the great advantage that it provides sound statistical inference. However,

it is computationally prohibitive for problems with many predictor variables of interest, because

all possible models have to be fitted on all bootstrap samples.

In random forests, on the other hand, a tree model is fit to every bootstrap sample only once.

Then the predictor variables are permuted in an attempt to mimic their absence in the prediction.

This approach can be considered in the framework of classical permutation test procedures (Strobl,

Boulesteix, Kneib, Augustin, and Zeileis 2008) and is feasible for large problems, but lacks the

sound statistical background available for the approach of Azen et al. (2001). Another difference

is that random forest variable importances reflect the effect of a variable in complex interactions

as outlined above, while the approach of Azen et al. (2001) reflects the main effects – at least as

long as interactions are not explicitly included in the candidate models.

A conditional version of the random forest permutation importance, that resembles the properties

of partial correlations rather than that of dominance analysis, is suggested by Strobl et al. (2008).
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Literature and Software

Random forests have only recently been included in standard textbooks on statistical learning, such

as Hastie et al. (2009) (while the previous edition, Hastie et al. 2001, did not cover this topic yet).

In addition to a short introduction of random forests, this reference gives a thorough background

on classification trees and related concepts of resampling and model validation, and is therefore

highly recommended for further reading. For the social sciences audience a first instructive review

on ensemble methods, including random forests and the related method bagging, was given by

Berk (2006). We suggest this reference for the treatment of unbalanced data (for example in the

case of a rare disease or mental condition), that can be treated either by means of asymmetric

misclassification costs or equivalently by means of weighting with different prior probabilities in

classification trees and related methods (see also Chen, Liaw, and Breiman 2004, for the alternative

strategy of “down sampling”, i.e., sampling from the majority class as few observations as there

are of the minority class), even though the interpretation of interaction effects in Berk (2006) is

not coherent, as demonstrated above. The original works of Breiman (1996a,b, 1998, 2001a,b), to

name a few, are also well suited and not too technical for further reading.

For practical applications of the methods introduced here, several up-to-date tools for data analysis

are freely available in the R system for statistical computing (R Development Core Team 2008).

Regarding this choice of software, we believe that the supposed disadvantage of command line

data analysis criticized by Berk (2006) is easily outweighed by the advanced functionality of the

R language and its add-on packages at the state of the art of statistical research. However,

in statistical computing the textbooks also lag behind the latest scientific developments: The

standard reference Venables and Ripley (2002) does not (yet) cover random forests either, while the

handbook of Everitt and Hothorn (2006) gives a short introduction to the use of both classification

trees and random forests. This handbook, together with the instructive examples in the following

section and the R-code provided in a supplement to this work, can offer a good starting point for

applying random forests to your data. Interactive means of visual data exploration in R, that can

support further interpretation, are described in Cook and Swayne (2007).

Further Application Examples

For further illustration, two additional application examples of model based partitioning and

random forests are outlined. The source code for reproducing all steps of the following analyses

as well as the examples in the previous sections in the R system for statistical computing (R

Development Core Team 2009) is provided as a supplement.

Model-Based Recursive Partitioning

For a reaction time experiment, where the independent variable is sleep deprivation (subset of

four exemplary subjects from the sleep-deprived group with measurements for the first 10 days of

the study from Belenky, Wesensten, Thorne, Thomas, Sing, Redmond, Russo, and Balkin 2003),

it is illustrated in Figure 9 that the effect of sleep deprivation on reaction time differs between

subjects.
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Figure 9: Model-based partition for the reaction time data. The model of interest relates

the number of days of sleep deprivation to the reaction time.

For each subject, the data set contains ten successive measurements (for days 0 through 9). The

subject ID is used as a pseudo-covariate for model based partitioning here: The subject IDs

are indicated in the tree structure in Figure 9, where the leftmost node, e.g., includes only the

measurements of subject 309, while the rightmost node includes the measurements of subjects 308

and 350. The model of interest in each final node relates the number of days of sleep deprivation

(0 through 9, on the abscissa) to the reaction time (on the ordinate).

We find that the reactions to sleep deprivation of subjects 308 and 350 can be represented by

one joint model, while the reactions of the other subjects are represented by distinct models. If

additional covariates, such as age and gender, rather than only the subject ID, were available for

this study, they could be used for partitioning as well, while using the subject ID as a pseudo

covariate as in this example resembles a latent class approach for identifying groups of subjects

with similar response patterns.

Of course, differences between subjects or groups of subjects could also be modeled by means of,

e.g., random effects or latent class models – but again the visual inspection of the model-based

partition, that requires no further assumptions, can provide a helpful first glance impression of

different response patterns present in the sample or help, e.g., identify groups of non-responders

in clinical studies.

Random Forests

When the number of variables is high, as for example in gene expression studies, parametric
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regression models are not applicable and ensemble methods are often applied for prediction and

the assessment of variable importance.

For an exemplary analysis of gene data, we adopted a data set originally presented by Ryan,

Lockstone, Huffaker, Wayland, Webster, and Bahn (2006): The data were collected in a case-

control study on bipolar disorder including 61 samples (from 30 cases and 31 controls) from the

dorsolateral prefrontal cortex cohort. In the original study of Ryan et al. (2006), no genes were

clearly found to be differentially expressed, i.e., to have an effect on the disease, in this sample.

Therefore, two genes were artificially modified to have an effect, so that we can later control

whether these genes are correctly identified.

In order to be able to illustrate t’the variable importances in a plot, in addition to the two simulated

genes and the three covariates age, gender and brain pH-level, a subset of 100 genes was randomly

selected from the 22,283 genes originally present by Ryan et al. (2006) for the example. Note,

however, that the application to larger data sets is only a question of computation time.

The permutation importances for all 105 variables are displayed in Figure 10. The effects of the

two artificially modified genes can be clearly identified. With respect to the remaining variables,

a conservative strategy for exploratory screening would be to include all genes whose importance

scores exceed the amplitude of the largest negative scores (that can only be due to random varia-

tion) in future studies.

A prediction from the random forest can be given either in terms of the predicted response class

or the predicted class probabilities, as illustrated in Table 1 for some exemplary subjects, with a

mismatch between the true and predicted class for subject 29.

Table 1: Predicted response class or class probability.

y ŷ p̂ (y = 1)

subject 28 1 1 0.80

subject 29 1 2 0.46

subject 30 1 1 0.64

subject 31 2 2 0.48

subject 32 2 2 0.43

For the entire learning sample the prediction accuracy estimate is over-optimistic (90.16%), while

the estimate based on the out-of-bag sample is more conservative (67.21%). The confusion matrices

in Table 2 display misclassifications separately for each response class.

Note that a logistic regression model would not be applicable in a sample of this size, even for the

reduced data set with only 102 genes – not even if forward selection was employed and only main

effects were considered, disregarding the possibility of interaction effects – because the estimation

algorithm does not converge.

In other cases, however, the prediction accuracy of the complex random forests model, involving

high-order interactions and nonlinearity, can be compared to that of a simpler, for example linear
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Figure 10: Variable importances for the original and modified gene data.
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Table 2: Confusion matrix with prediction from learning (left) and out-of-bag sample (right).

ŷ = 1 ŷ = 2

y = 1 28 2

y = 2 4 27

ŷ = 1 ŷ = 2

y = 1 20 10

y = 2 10 21

or logistic regression model including only low-order interactions, to guide the decision whether

the simpler, interpretable model would be equally adequate.

To further explore and interpret the effects and interactions of the predictor variables that were

found relevant in a random forest, multivariate data visualization tools, such as those described

in Cook and Swayne (2007), are strongly suggested.

Features and Pitfalls

The way recursive partitioning methods – in particular the ensemble methods bagging and random

forests – work induces some special characteristics, that distinguish them from other (even other

nonparametric) approaches. Some of these special features are mostly technical, while others can

prove very beneficial in applications, and yet others may pose severe practical problems, that we

want to address here.

“Small n Large p” Applicability

The fact that variable selection can be limited to random subsets in random forests make them

particularly well applicable in “small n large p” problems with many more variables than obser-

vations, and has added much to the popularity of random forests. However, even if the set of

candidate predictor variables is not restricted as in random forests, but covers all predictor vari-

ables as in bagging, the search is only a question of computational effort: Unlike logistic regression

models, e.g., where parameter estimation is not possible (for instance, due to linear constraints

in the predictors or perfect separation of response classes in some predictor combinations) when

there are too many predictor variables and too few observations, tree-based methods like bagging

and random forests only consider one predictor variable at a time, and can thus deal with high

numbers of variables sequentially. Therefore Bureau et al. (2005) and Heidema, Boer, Nagelkerke,

Mariman, van der A, and Feskens (2006) point out that the recursive partitioning strategy is a

clear advantage of random forests as opposed to more common methods like logistic regression in

high dimensional settings.

Nonlinear Function Approximation

Classification and regression trees are provably Bayes consistent, i.e. in principle they can ap-

proximate any decision boundary, whether linear or highly nonlinear, given a sufficiently large

data set and allowed to grow at a proper rate (see, e.g., Devroye, Györfi, and Lugosi 1996). For
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linear functions, the problem from a practical point of view is that a single tree’s step-function

approximation will be rather poor. Ensembles of trees, however, can approximate functions more

smoothly by averaging over the single trees’ step-functions.

Therefore, bagging and random forests can be used to approximate any unknown function, even

if it is nonlinear and involves complex interactions. An advantage of ensemble methods in this

context is that, as compared to other nonlinear regression approaches such as smoothing splines,

neither the shape of the function nor the position or number of knots needs to be prespecified

(see, e.g., Wood 2006, for knot selection approaches in generalied additive models). On the other

hand, the resulting functional shape cannot be interpreted or grasped analytically, and (aside

from measures of overall variable importance) can only serve as a “black-box” for prediction. This

characteristic of many machine learning approaches has fueled discussions about the legitimacy

and usefulness of such complex, nonlinear models (see, e.g., Hand 2006, and the corresponding

discussion).

In practice, for a given data set, where nonlinear associations or high-order interactions are sus-

pected, complex approaches like random forests can at least serve as a benchmark predictor: If a

linear or other parametric model with a limited number and degree of interaction terms can reach

the (cross validated or test sample) prediction accuracy of the more complex model, the extra

complexity may be uncalled for and the simpler, interpretable model should be given preference.

If, however, the prediction accuracy cannot be reached with the simpler model, and, for example,

the high importance of a variable in a random forest is not reflected by its respective parameters

in the simpler model, relevant nonlinear or interaction effects may be missing in the simpler model

and it may not be suited to grasp the complexity of the underlying process.

In addition to this, a “black-box” method like random forests can be used to identify a small

number of potentially relevant predictors from the full feature list, that can then be processed,

e.g., by means of a familiar parametric method. This two-stage approach has been successfully

applied in a variety of applications (see, e.g., Ward et al. 2006). Note, however, that variable

selection should not be conducted before applying another statistical method on the same learning

data (Ambroise and McLachlan 2002; Leeb and Pötscher 2006; Boulesteix et al. 2008).

The “XOR”-Problem and Order Effects

In the literature on recursive partitioning, you may come across the so called“XOR”-problem, that

describes a situation where two variables show no main effect, but a perfect interaction. In this

case, due to the lack of a marginally detectable main effect, none of the variables may be selected

in the first split of a classification tree, and the interaction may never be discovered.

In such a perfectly symmetric, artificial XOR problem, a tree would indeed not find a cutpoint to

start with. However, a logistic regression model would not be able to identify an effect in any of

the variables either, if the interaction was not explicitly included in the logistic regression model

– and in that case a tree model, where an interaction effect of two variables can also be explicitly

added as a potential predictor variable, would do equally well.

In addition to this, a tree, and even better an ensemble of trees, is able to approximate the XOR
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problem by means of a sequence of cutpoints driven by random fluctuations that are present in

any real data set. In this case, the random preselection of splitting variables in random forests

again increases the chance that a variable with a weak marginal effect is still selected, at least in

some trees, because some of its competitors are not available.

A similar argument applies to order effects when comparing stepwise variable selection in regression

models with the variable selection that can be conducted on the basis of random forest variable

importance measures: In both, stepwise variable selection and single trees, order effects are present,

because only one variable at a time is considered – in the context of the variables that were

already selected, but regardless of all variables yet to come. However, the advantage of ensemble

methods, that employ several parallel tree models, is that the order effects of all individual trees

counterbalance, so that the overall importance ranking of a variable is much more reliable than

its position in stepwise selection (see also Rossi et al. 2005).

Out-of-Bag Error Estimation

It was already mentioned, and used in the application example, that bagging and random forests

come with their own“built-in”test sample, the out-of-bag observations, that provide a fair means of

error estimation (Breiman 1996b). Of course similar validation strategies, based either on sample

splitting or resampling techniques (see, e.g., Hothorn, Leisch, Zeileis, and Hornik 2005; Boulesteix

et al. 2008) or ideally even external validation samples (König, Malley, Weimar, Diener, and

Ziegler 2007), can and should be applied to any statistical method. However, in many disciplines

intensive model validation is not common practice. Therefore a method that comes with a built-in

test sample, like random forests, may help sensitize for the issue and relieve the user of the decision

for an appropriate validation scheme.

Missing Value Handling

Besides imputation approaches offered by some random forests algorithms, all tree based meth-

ods provide another intuitive strategy for missing value handling: This strategy is that, at first,

observations that have missing values in the variable that is currently evaluated are ignored in

the computation of the impurity reduction for this variable. However, the same observations are

included in all other computations, so that the method does not involve cancelation of observations

with missing values (which can result in heavy data loss).

After a splitting variable is selected it would be unclear to what daughter node the observations

that have a missing values in this variable should be assigned. Therefore a surrogate variable is

selected, that best predicts the values of the splitting variable. By means of this surrogate variable

the observations can then be assigned to the left or right daughter node (cf., e.g., Hastie et al.

2001). A flaw of this strategy is, however, that currently the permutation variable importance

measure is not defined for variables with missing values.

Bias in Variable Selection and Variable Importance

In the classical classification and regression tree algorithms CART and C4.5, variable selection
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is biased in favor of variables with certain characteristics, even if these variables are no more

informative than their competitors. For example, variables with many categories and numeric

variables or, even more unintuitively, variables with many missing values are artificially preferred

(see, e.g., White and Liu 1994; Kim and Loh 2001; Strobl, Boulesteix, and Augustin 2007).

This bias is carried forward to ensembles of trees: Especially the variable importance can be

biased when a data set contains predictor variables of different types (Strobl et al. 2007). The

bias is particularly pronounced for the Gini importance, that is based on the biased Gini gain

split selection criterion (Strobl et al. 2007), but can also affect the permutation importance. Only

when subsamples drawn without replacement, instead of bootstrap samples, in combination with

unbiased split selection criteria, are used in constructing the forest, the resulting permutation

importance can be interpreted reliably (Strobl et al. 2007).

For applications in R, the functions ctree for classification and regression trees and cforest for

bagging and random forests (both freely available in the add-on package party; Hothorn et al.

2006; Hothorn, Hornik, and Zeileis 2008) guarantee unbiased variable selection when used with

the default parameter settings, as documented in the supplement to this work.

The functions tree (Ripley 2007) and rpart (Therneau and Atkinson. 2006) for trees and random-

Forest (Breiman, Cutler, Liaw, and Wiener 2006; Liaw and Wiener 2002) for bagging and random

forests, on the other hand, that resemble the original CART and random forests algorithms more

closely, induce variable selection bias and are not suggested when the data set contains predictor

variables of different types.

Scaled and Unscaled Importance Measures

For the permutation importance a scaled version, the z-score, is available or even default in many

implementations of random forests. The term “scaled” here is somewhat misleading, however, for

two reasons: Firstly, the variable importance does not depend on the scaling or variance of the

predictor variables in the first place (in fact, the whole method is invariant against the scaling of

numeric variables). Therefore it is not necessary to account for the scaling of predictors in the

variable importance.

Secondly, for a “scaled” measure one may assume that its values are comparable over different

studies – which is not the case for the z-score in random forests, that heavily depends on the

choice of tuning parameters, as outlined in the next section.

Therefore, we suggest not to interpret or compare the absolute values of the importance measures,

not even the z-scores, but rely only on a descriptive ranking of the predictor variables.

Tests for Variable Importance and Variable Selection

In addition to using variable importance measures as a merely descriptive means of data explo-

ration, different significance tests and schemes for variable selection have been suggested: On the

official random forests website, a simple statistical test based on the supposed normality of the

z-score is proposed by Breiman and Cutler (2008, date of access), that has been applied in a variety

of studies – ranging from the investigation of predictors of attempted suicide (Baca-Garcia et al.
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2007) to the monitoring of a large area space telescope on board of a satellite (Paneque, Borgland,

Bovier, Bloom, Edmonds, Funk, Godfrey, Rando, Wai, and Wang 2007).

This approach may appear more statistically advanced than a merely descriptive usage of the

random forest variable importance. However, it shows such alarming statistical properties that

any statement of significance made with this test is nullified (Strobl and Zeileis 2008): The power

of this test depends on the number of trees in the ensemble ntree, over which the importance is

averaged (cf. Equations 2 and 3 in section “Variable importance”; see also Lunetta et al. 2004).

Thus reporting the significance of variable importance scores (like, e.g., Baca-Garcia et al. 2007,

who do not even report the parameter settings they use for fitting the random forest) can be highly

misleading, because the number of variables whose scores exceed a given threshold for significance

depends on the arbitrary choice of a tuning parameter.

In addition to this, all statistical tests and variable selection schemes based on the original per-

mutation importance, such as those suggested by Diaz-Uriarte and Alvarez de Andrés (2006) and

Rodenburg, Heidema, Boer, Bovee-Oudenhoven, Feskens, Mariman, and Keijer (2008), suffer from

another artifact, that is induced by the way the permutation importance is constructed: the ar-

tificial preference of correlated predictor variables. In a permutation test framework Strobl et al.

(2008) show that only a conditional permutation scheme reflects the desired null hypothesis, and

the resulting conditional importance describes the actual effect of a variable in the presence of

correlations more reliably.

For selecting variables for further investigation in an exploratory study, we suggest a conservative

decision aid for variable selection, already mentioned in the application example: All variables

whose importance is negative, zero or has a small positive value that lies in the same range as

the negative values, can be excluded from further exploration. The rationale for this rule of

thumb is that the importance of irrelevant variables varies randomly around zero. Therefore

positive variation of an amplitude comparable to that of negative variation does not indicate an

informative predictor variable, while positive values that exceed this range may indicate that a

predictor variable is informative.

Randomness and Stability

One special characteristic of random forests and bagging, that new users are often not entirely

aware of, is that they are truly “random” models in the sense that, for the same data set, the

results may differ between two computation runs.

The two sources of randomness that are responsible for these possible differences are (a) the boot-

strap samples (or subsamples) that are randomly drawn in bagging and random forests and (b) the

random preselection of predictor variables in random forests. When When the permutation im-

portance is computed, another source of of variability is the variability is the random permutation

of the predictor vectors.

Due to these random processes, a random forest is only exactly reproducible when the random

seed, a number that can be set by the user and determines the internal random number generation

of the computer, is fixed. Otherwise, the results will vary between two runs of the same code. To
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illustrate this point, random seeds are set in the supplementary code for the application examples,

whenever random sampling is involved.

The differences induced by random variations are, however, negligible – as long as the parameters

of a random forest have been chosen such as to guarantee stable results:

- The number of trees ntree highly affects the stability of the model. In general, the higher

the number of trees the more reliable is the prediction and the interpretability of the variable

importance.

- The number of randomly preselected predictor variables mtry may also affect the stability

of the model and the reliability of the variable importance. In general, random forests with

random preselection perform better than bagging with no random preselection at all, but

small values of mtry do not always prove beneficial: When predictor variables are highly

correlated, the results of Strobl et al. (2008) indicate that a higher number of randomly

preselected predictor variables is better suited to reflect conditional importance. In addition

to that, if the number of randomly preselected predictor variables is very low, interactions

of high order may be missed in the tree building process. In situations with few relevant

variables, “small mtry results in many trees being built that do not incorporate any of

the relevant [variables]” (Diaz-Uriarte and Alvarez de Andrés 2006), which would lead to a

decrease in prediction accuracy.

The number of randomly preselected predictor variables can also be chosen such as to opti-

mize prediction accuracy by means of cross validation in some algorithms. Note, however,

that the choice of tuning parameters in random forests is not as critical as in other comput-

erintensive approaches, such as support vector machines (Svetnik, Liaw, Tong, and Wang

2004), and random forests often produce good results even “off the shelf” with default set-

tings.

Note that the two tuning parameters, ntree and mtry, also interact: To assess a high number of

predictor variables in a data set, a high number of trees or a high number of preselected variables

for each split, or ideally both, are necessary so that each variable has a chance to occur in enough

trees. Only then its average variable importance measure is based on enough trials to actually

reflect the importance of the variable and not just a random fluctuation.

In summary this means: If you observe that, for a different random seed, your prediction results

and variable importance rankings (for the top-scoring variables) differ notably, you should not

interpret the results but adjust the number of trees and preselected predictor variables.

Do Random Forests Overfit?

The study referred to in Breiman (2001b), where it is stated (and has been extensively cited ever

since) that random forests do not overfit, may be a prominent example for a premature conclusion

drawn from an unrepresentative sample. A variety of studies exploring the characteristics of

machine learning tools such as random forests are based on only a few, real data sets, that happen

to be freely available in some data repository. The particular data sets investigated by Breiman
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(2001b) seem to enhance the impression that random forests would not overfit, but this notion is

heavily criticized by Segal (2004).

The theoretical results of Breiman (1996a) do support the fact that ensemble methods do not

overfit with an increasing number of trees. However, the real data “case studies” referred to

in Breiman (2001b) do not exclude the possibility that they overfit due to other reasons. For

further methodological investigations of machine learning algorithms we therefore strongly suggest

to employ well designed and controlled simulation experiments, rather than case studies with an

unrepresentative selection of real data sets with unknown distributional properties, when analytical

results are not feasible.

With respect to the theoretical foundations and practical application of random forests, Segal

(2004) implies that the depth of the trees in random forests, rather than the number of trees as

suspected, e.g., by Luellen et al. (2005), may regulate overfitting.

While most previous publications have argued that in an ensemble each individual tree should be

grown as large as possible and that trees should not be pruned, the recent results of Lin and Jeon

(2006) also show that creating large trees is not necessarily the optimal strategy. In problems with

a high number of observations and few variables a better convergence rate (of the mean squared

error as a measure of prediction accuracy) can be achieved when the terminal node size increases

with the sample size (i.e. when smaller trees are grown for larger samples). On the other hand for

problems with small sample sizes or even “small n large p” problems, growing large trees usually

does lead to the best performance.

Discussion and Conclusion

Recursive partitioning methods have become popular and widely used tools in many scientific

fields. Especially random forests have been widely applied in genetics and related disciplines

within the past few years. First applications in psychology show that random forests can be of

use in a wide variety of applications in this field as well. With this review we hope to have given

the necessary background for a successful – yet sensible – use of recursive partitioning methods,

in particular of random forests, that have drawn much attention due to their applicability to even

high dimensional problems.

Besides the applications to regression and classification problems covered here, the function cfor-

est (Hothorn et al. 2008, 2006) used in the application example can even be applied to survival

data with a censored response and can thus serve as a means of data exploration in a broad range

of longitudinal studies, too.

Of course other recent statistical learning methods, such as boosting (Freund and Schapire 1997)

and support vector machines (cf. Vapnik 1995, for an introduction) can also be applied to the

scope of problems we suggested for the application of random forests. The performance of these

methods is within a close range with that of random forests, so that in some comparison studies

random forests clearly outperform their competitors (cf., e.g., Wu, Abbott, Fishman, McMurray,

Mor, Stone, Ward, Williams, and Zhao 2003), while in others they are slightly outperformed

(cf., e.g., König, Malley, Pajevic, Weimar, Diener, and Ziegler 2008, for a comparison of several
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statistical learning methods in a medical example of moderate size, where logistic regression was

also applicable).

In summary, one can conclude in accordance with Heidema et al. (2006), that high dimensional data

should be approached by several different methods because each single method has its strengths

and weaknesses: Boosting, for example, can be employed for variable selection in linear and other

additive models (Bühlmann 2006; Bühlmann and Hothorn 2007, for an implementation in R).

Similarly, shrinkage approaches like the LASSO (cf., e.g., Hastie et al. 2001), the elastic net (Zou

and Hastie 2005) and the recent approach of Candes and Tao (2007) perform variable selection in

linear models by means of penalization of the model coefficients. However, in contrast to random

forests, for these methods it has to be assumed that the model is linear or additive and that the

problem is sparse (meaning that only few predictor variables have an effect). For extremely small

sample sizes, on the other hand, exact methods like the multivariate permutation tests described

in Mielke and Berry (2001) or Good (2005) may be more suited.

With respect to ease of application, the results of the empirical comparisons between different

supervised learning methods conducted by Caruana and Niculescu-Mizil (2006) and Svetnik et al.

(2004) indicate that random forests are among the best performing methods even without extra

tuning. Therefore random forests can be considered as a valuable “off the shelf” tool for exploring

complex data sets, that may in a few years from now become as popular in psychology as it is now

in the fields of genetics and bioinformatics.
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Supplement

This supplement provides the R code and documentation for the application examples presented in

the paper “An Introduction to Recursive Partitioning: Rationale, Application and Characteristics

of Classification and Regression Trees, Bagging and Random Forests”. It was created by means of

the Sweave function for mixing R and LATEX code (Leisch 2002).

Classification and Regression Trees

• Select a working directory, where all created objects and figures will be stored.

> setwd("~/myfolder")

• Read in the data set.

> dat_smoking <- read.table("dat_smoking.txt")

The variable intention_to_smoke is the binary response variable. The other variables are

two binary and two numeric predictor variables.

(If SPSS data frames are supposed to be read, attach the package foreign and use the

functions read.spss and as.data.frame to create an appropriate R data frame.)

• Attach the add-on package party.

> library("party")

(If packages have not been installed previously, they can be installed with the install.packages

command. Use the option dependencies = TRUE to ensure all necessary functions from other

packages are also available.)

• Fit and plot a classification tree.

> myctree <- ctree(intention_to_smoke ~ ., data = dat_smoking)

The association between the response variable intention_to_smoke and all other variables

in the data set, as indicated by the . symbol in the function call, is modeled.

The default parameter settings in the function ctree guarantee that variable selection is

unbiased (Hothorn, Hornik, and Zeileis 2006).

A classification tree is fitted automatically, because the response variable is a factor. (The

“c” in ctree does not stand for “classification”, but refers to the conditional inference tests

employed in split selection.) For a numeric response, a regression tree would be fitted.

Make sure your response variable is correctly encoded!

This can be checked, e.g., by means of:

> class(dat_smoking$intention_to_smoke)
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[1] "factor"

> plot(myctree)
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Model-Based Recursive Partitioning

• Make available the data set from the add-on package lme4.

> data("sleepstudy", package="lme4")

• Select some subjects. (Otherwise fitting will take a while, because all combinations of sub-

jects need to be compared for parameter instabilities in their regression models.)

> dat_sleep <- subset(sleepstudy, Subject %in% c(308,309,335,350))

> dat_sleep$Subject <- factor(dat_sleep$Subject)

(The latter command only eliminates the remaining factor levels.)

• Fit and plot a model-based tree.

> mymob <- mob(Reaction ~ Days | Subject, data = dat_sleep,

+ control = mob_control(minsplit = 10))

The minimum number of observations per node necessary for splitting minsplit is set to

10 here, because 10 observations are available for each subject and we want to be able to

identify even single subjects with deviating model parameters.

If each observation corresponded to one subject, and subjects were partitioned w.r.t. co-

variates such as age and gender, the default value of minsplit would guarantee, as a stop
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criterion, that in each terminal node a sufficient number of observations is available for model

fitting.

> plot(mymob)
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Random Forests

• Read in the data set.

> dat_genes <- read.table("dat_genes.txt")

The variable status is the binary response variable. The other variables are clinical and

gene predictor variables, of which two were modified to be relevant.

• Set control parameters for random forest construction.

> mycontrols <- cforest_unbiased(ntree=1000, mtry=20, minsplit=5)

The parameter settings in the default option cforest_unbiased guarantee that variable

selection and variable importance are unbiased (Strobl, Boulesteix, Zeileis, and Hothorn

2007).

The ntree argument controls the overall number of trees in the forest, and the mtry argument

controls the number of randomly preselected predictor variables for each split.

If a data set with more genes was analyzed, the number of trees (and potentially the number

of randomly preselected predictor variables) should be increased to guarantee stable results.

The square-root of the number of variables is often suggested as a default value for mtry.

Note, however, that in the cforest function the default value for mtry is fixed to 5 for

technical reasons, and needs to be adjusted if desired.
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If mtry was set to the number of predictor variables in the data set, ncol(dat)-1 (= number

of columns, but not counting the column for the response variable), the procedure would be

equal to bagging.

The minimum number of observations per node necessary for splitting, minsplit, is set to a

low value here, because the sample is rather small and in random forests usually large trees

are desired. The other potential stopping criterion for the cforest function, the minimum

criterion value necessary for splitting, mincriterion, is already set to 0 per default.

The control parameters can either be stored in advance and then used in the function call,

as displayed here, or specified directly in the function call, as in the previous example.

• Set an (arbitrary) random seed and fit a random forest with the control parameters defined

above.

Note that, as a hint to the reader, random seeds are set every time random sampling or

random permutations are involved in the following.

> set.seed(2908)

> mycforest <- cforest(status ~ ., data=dat_genes, controls=mycontrols)

• Look at some trees in the forest (the same method was used to illustrate the variability of

single trees in bagging and random forests in the paper).

> xgr <- 2

> grid.newpage()

> cgrid <- viewport(layout = grid.layout(xgr, xgr), name = "cgrid")

> pushViewport(cgrid)

> for (i in 1:xgr) {

+ for (j in 1:xgr) {

+ pushViewport(viewport(layout.pos.col = i, layout.pos.row = j))

+ tr <- party:::prettytree(mycforest@ensemble[[i + j * xgr]],

+ names(mycforest@data@get("input")))

+ plot(new("BinaryTree", tree = tr, data = mycforest@data,

+ responses = mycforest@responses),

+ newpage = FALSE, pop = FALSE, type="simple")

+ upViewport()

+ }

+ }
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• Compute and plot the permutation importance of each predictor variable.

> set.seed(2908)

> myvarimp <- varimp(mycforest)

> barplot(myvarimp[90:100], space=0.75, xlim=c(0,0.035),

+ names.arg=rownames(myvarimp)[90:100], horiz=TRUE, cex.names=0.45,

+ cex=0.45, las=1)
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gene_9569
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gene_11676

gene_4087

gene_8674

gene_7193

gene_5491

gene_17678

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

(Only a few genes are displayed here to save space. All but the first plot options are only

for aesthetics.)

• Prediction in terms of the predicted response class or the predicted class probabilities for

some selected subjects.
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> subjects <- 28:32

> y <- dat_genes$status[subjects]

> y_hat <- predict(mycforest, newdata=dat_genes[subjects,])

> p_hat <- sapply(treeresponse(mycforest, newdata=dat_genes[subjects,]),

+ FUN=function(x)x[,1])

> tab <- cbind(y, y_hat, p_hat)

> rownames(tab) <- paste("subject",subjects)

The results are displayed here as a LATEX table by means of the xtable function from the

package of the same name. (Only one class probability needs to be displayed for a binary

classification problem.)

> library("xtable")

> colnames(tab)<-c("$y$", "$\\hat{y}$", "$\\hat{p}\\left(y=1\\right)$")

> print(xtable(tab, align="cccc", digits=c(0,0,0,2)),

+ type = "latex", sanitize.text.function = function(x){x})

y ŷ p̂ (y = 1)

subject 28 1 1 0.80

subject 29 1 2 0.46

subject 30 1 1 0.64

subject 31 2 2 0.48

subject 32 2 2 0.43

• Compute the percentage of correct predictions and the confusion matrix from the entire

learning sample or from the out-of bag (OOB) sample only.

> y_hat<-predict(mycforest)

> y_hat_oob<-predict(mycforest, OOB=TRUE)

> sum(dat_genes$status==y_hat)/nrow(dat_genes)

[1] 0.9016393

> sum(dat_genes$status==y_hat_oob)/nrow(dat_genes)

[1] 0.6721311

> table(dat_genes$status, y_hat)

y_hat

Bipolar disorder Healthy control

Bipolar disorder 28 2

Healthy control 4 27
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> table(dat_genes$status, y_hat_oob)

y_hat_oob

Bipolar disorder Healthy control

Bipolar disorder 20 10

Healthy control 10 21
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