ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/239666642
A Simple Positive Definite Advection Scheme with Small Implicit Diffusion

Article in Monthly Weather Review - March 1983

DOI: 10.1175/1520-0493(1983)111<0479:ASPDAS>2.0.C0;2

CITATIONS READS
467 388
1 author:

2 Piotr K. Smolarkiewicz
National Center for Atmospheric Research
—
235 PUBLICATIONS 10,044 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

poject  pantarhei View project

All content following this page was uploaded by Piotr K. Smolarkiewicz on 18 March 2015.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/239666642_A_Simple_Positive_Definite_Advection_Scheme_with_Small_Implicit_Diffusion?enrichId=rgreq-53dee360dc5fd73cd13c5cc6d5d654ae-XXX&enrichSource=Y292ZXJQYWdlOzIzOTY2NjY0MjtBUzoyMDgzMDA2MTc1Mzk1ODdAMTQyNjY3NDE0NTQ4MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/239666642_A_Simple_Positive_Definite_Advection_Scheme_with_Small_Implicit_Diffusion?enrichId=rgreq-53dee360dc5fd73cd13c5cc6d5d654ae-XXX&enrichSource=Y292ZXJQYWdlOzIzOTY2NjY0MjtBUzoyMDgzMDA2MTc1Mzk1ODdAMTQyNjY3NDE0NTQ4MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/pantarhei?enrichId=rgreq-53dee360dc5fd73cd13c5cc6d5d654ae-XXX&enrichSource=Y292ZXJQYWdlOzIzOTY2NjY0MjtBUzoyMDgzMDA2MTc1Mzk1ODdAMTQyNjY3NDE0NTQ4MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-53dee360dc5fd73cd13c5cc6d5d654ae-XXX&enrichSource=Y292ZXJQYWdlOzIzOTY2NjY0MjtBUzoyMDgzMDA2MTc1Mzk1ODdAMTQyNjY3NDE0NTQ4MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Piotr-Smolarkiewicz?enrichId=rgreq-53dee360dc5fd73cd13c5cc6d5d654ae-XXX&enrichSource=Y292ZXJQYWdlOzIzOTY2NjY0MjtBUzoyMDgzMDA2MTc1Mzk1ODdAMTQyNjY3NDE0NTQ4MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Piotr-Smolarkiewicz?enrichId=rgreq-53dee360dc5fd73cd13c5cc6d5d654ae-XXX&enrichSource=Y292ZXJQYWdlOzIzOTY2NjY0MjtBUzoyMDgzMDA2MTc1Mzk1ODdAMTQyNjY3NDE0NTQ4MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National-Center-for-Atmospheric-Research?enrichId=rgreq-53dee360dc5fd73cd13c5cc6d5d654ae-XXX&enrichSource=Y292ZXJQYWdlOzIzOTY2NjY0MjtBUzoyMDgzMDA2MTc1Mzk1ODdAMTQyNjY3NDE0NTQ4MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Piotr-Smolarkiewicz?enrichId=rgreq-53dee360dc5fd73cd13c5cc6d5d654ae-XXX&enrichSource=Y292ZXJQYWdlOzIzOTY2NjY0MjtBUzoyMDgzMDA2MTc1Mzk1ODdAMTQyNjY3NDE0NTQ4MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Piotr-Smolarkiewicz?enrichId=rgreq-53dee360dc5fd73cd13c5cc6d5d654ae-XXX&enrichSource=Y292ZXJQYWdlOzIzOTY2NjY0MjtBUzoyMDgzMDA2MTc1Mzk1ODdAMTQyNjY3NDE0NTQ4MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

MARCH 1983

PIOTR K. SMOLARKIEWICZ

479

A Simple Positive Definite Advection Scheme with Small Implicit Diffusion
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~ National Center for Atmospheric Research?, Boulder, CO 80307

(Manuscript received 17 September 1982, in final form 17 December 1982)

ABSTRACT

The development of negative values for positive definite scalars in the solution of the advection equation
is an important difficulty in numerical modeling. This paper proposes a new positively definite advection
scheme which has a simple form, small implicit diffusion and low computational cost. Comparisons of the
present scheme with some other known positive definite schemes are also presented.

1. Introduction

In numerical modeling of atmospheric phenomena
it is often necessary to solve the advection equation
for positive definite scalar functions. Using second-
order or higher-order-accuracy advection schemes
can introduce some difficulties because negative val-
ues arise in the solution (Soong and Ogura, 1973).
This effect can be especially important in cases where
the solution of the advection equation is used as input
to nonlinear equations describing microphysical phe-
nomena (e.g., the stochastic coalescence equation),
which can eventually lead to instability of the whole
system. Care about the positiveness of the solution
leads to the use of upstream differencing or other low-
order schemes (Soong and Ogura, 1973) which pro-
duce no dispersive “ripples” but which suffer from
excessive numerical diffusion.

In the last ten years a possible resolution of this
dilemma has been developed especially for applica-
tion to numerical modeling of plasma fluid probiems.
The flux-corrected transport (FCT) method, devel-
oped by Boris and Book (1973, 1976), Book et al.
(1975) and generalized for the multidimensional case
by Zalesak (1979), and the self-adjusting hybrid
scheme (SAHS) method developed by Harten (1978)
and Harten and Zwas (1972) are based on a hybrid
scheme in which the advective fluxes are given as a
weighted average of the first-order positive definite
scheme’s fluxes and 'higher-order scheme’s fluxes.
Both methods were constructed to deal effectively
with shocks and contact discontinuities. Solutions of
the advection equation obtained by using FCT or
SAHS are positive definite and as can be seen from
presented tests (Zalesak, 1979; Harten, 1978) can be
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very accurate. Unfortunately, application of these
methods to the modeling of atmospheric phenomena
(especially multidimensional problems) is rather lim-
ited because of the excessive computer time required.

The idea of the hybrid scheme was applied to the
atmospheric modeling by Clark (1979) and Clark and
Hall (1979). They proposed a hybrid-type scheme
based on a Crowley advection scheme (Crowley,
1968) as a higher-order scheme and “upstream”
scheme as a low-order scheme. Although positive
definiteness is not guaranteed in the scheme, the pro-
duced negative values are small enough to be ne-
glected. The numerical diffusion in the scheme is
larger than in, e.g., FCT but time consumption is
about half that in FCT.

This paper presents another solution. Using an it-
erative approach, one can construct from the basis
of the “upstream” scheme a new scheme which is
positive defined but does not contain strong implicit
diffusion. As will be shown later, the scheme is less
time consuming than other positive-defined schemes
and produces results which are comparable to the
results obtained from the more complicated hybrid
schemes.

In Section 2 the scheme and its development are
presented. Section 3 contains the proof of the con-
sistency and stability of the scheme. In Section 4 the
results of comparison tests with the other positively-
defined schemes are presented.

2. Development of a new positive definite advection
scheme

The equation to be solved is the continuity equa-
tion describing the advection of a nondiffusive quan-
tity in a flow field, i.e.,

’ % + div(Vy) = 0, (1)

where ¥(x, y, z, 1) is the nondiffusive scalar quantity,
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= (u, v, w) is the velocity vector, and Xx, y, z, t are
the space and time independent variables. For sim-
plicity the one-dimensional case of (1),

o 9.
+ax(u¢)

o (2

will be discussed. As will be shown later, the multi-
dimensional case is a simple generalization of the one-
- dimensional results. As a base for construction of the
proposed scheme the “upstream” advection scheme
on a staggered grid was chosen:

Y =yl - {FY, ,+1, ulip)
- F(tl/ —1 l//l ’ ul—l/Z)} (3)
where
F(‘//h ¢i+l > u)
At
= [(u + |ul: + (u — lul)is] Ax 4)
Here ¢V is the value of ¢ at the i grid point for N

time step, Af, Ax are the time and space increments,
and the fluxes F are defined at the same staggered
points as the velocity values.

The stability condition for scheme (3) has a form

U; At
max(———| 172 ) <1
i AXx

(in a case when velocity is time-dependent, Az has to
be adjusted at each time step or max has to be re-

&)

placed by max) Under condition (5) scheme (3) is
positive deﬁmte which means:
W?=0 foralli)— (yY¥=>0 foralliand N). (6)

The properties (5) and (6) of scheme (3) as well as
low computer time consumption are very useful for
* application of (3) to the numerical evaluation of (2).
Unfortunately, scheme (3) is a first-order scheme
(both in space and time) and has strong implicit dif-
fusion. The rate of the implicit diffusion in (3) may
be easily estimated for the case of uniform flow
(u = const). Expanding ¢!, y%,, ¢~ in a second-
order Taylor sum about the point (x;, %), scheme
(3) may be written as

N a N
2l =—a—);(u¢)|i

N

.+ i [O.S(IuIAx — Atu?) %] )]
ox ox

i

From (7) it can be seen that scheme (3) approximates
with second-order accuracy the equation
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a
Y ®)

9
( ‘l/) - _( lmpl aﬁ)
where K,mp. 0. 5(|ule — Am?).

As At and Ax — 0, Eq. (8) approaches Eq. (2) but
during a realistic computational process scheme (3)
with finite Af and A x approximates more accurately
an advection equation with an additional diffusive
term (8) rather than (2). On the other hand, this im-
plicit diffusion term is important for stability of the’
scheme and cannot be simply subtracted from the
scheme. An intuitively obvious approach is to make
the advection step using (3) and then reverse the effect
of the diffusion equation

d
Kimpl I\i)

W 9 (
at  dx
in the next corrective step.

The problem is that the diffusion process and the
equation that describes it are irreversible. But it is not
true that the solution of the diffusion equation cannot
be reversed in time. Just as a film showing the dif-
fusion process may be reversed in time, the equivalent
numerical trick may be found to produce the same
effect. It is enough to notice that (9) may be written
in the form

)

W_ 8
ol CH)) (10)
where
K%—"“”ﬂ, if ¢>0 _
Uy = ¥ ox (1)
0, ©if ¢ =0.

Here u, will be referred to later as the “diffusion ve-
locity.” Now, defining an “antidiffusion velocity”

3 {—ud, if ¢y>0
u=
0,

1
if ¢y=0, (12)

the reversal in time of the diffusion equation (9) may

be simulated by the advection equation (10) with an
“antidiffusion velocity” . Based on these concepts,
the following advection scheme is suggested:

D yr =l = (FOl, v, ullip)
— FyM,, Y, ulip)}, (13)
2) Y =g — (FF, ¥ 5, diip) '
— FE, ¥F, 42}, . (14)
where
i = (Iu,+|/2|(A¢)i +A\:Zz:12)€()\2;1 (23] . (15)

where F is defined as in (4), and ¢ is a small value,
, 10715, to ensure # = 0 when y%, = ¢*¥ = 0. It
is assumed that ¢¢ = 0, for all i. The proposed scheme
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may be written in one step only, but this is only a
matter of efficient coding.

3. Stability and consistency of proposed scheme

The proposed scheme is constructed from the well
known, stable and consistent “upstream” scheme. To
show consistency of the whole scheme [(13), (14)] it
is enough to show that when Ax, At — 0, the second
step of scheme 2) does not affect the solution of the
first step 1). Because of the stability condition (5) for
the “upstream” scheme and the fact that as Ax —
0, Yir — ¥ — 0, it is easy to see that 7 — 0 in (15).
So, using (4), (14), (15) and dividing both sides of
(14) by At, Eq. (14) approaches the form

oy
o 0, (16)
which means that the scheme (13), (14) is consistent.
To show stability of the scheme it is enough to
show that stability of the step 1) implies the stability
of 2). Because step 2) is also an upstream scheme,
stability condition (5) takes the form

Uiy 12| A2
max(l 1+1/2! )<1
i

Ax amn

Using Eq. (15) condition (17) may be written as
max |ui+|/2|At.(1 _ |ui+1/2|Al)

i Ax AXx

A B

|¢;‘:+1 - ¢f|

X Win +C¢:-* o

The terms A and B are less than or equal to unity
because of (5). Term C is less than or equal to unity
because Y¥* was obtained from the positive definite
“upstream” scheme 1). It is important to notice that
the maximum of A - B = 0.25 which allows values at
@ to increase without destroying the stability of the
scheme. In a multidimensional case the scheme may
be used in the time-splitting or the combined form,
optionally. [The differences between time-splitting
and combined schemes are discussed in detail in Smo-
larkiewicz (1982).] In the time-splitting form the sta-
bility and consistency of the scheme is a consequence
of the stability and consistency of the one-dimen-
sional scheme. '

When the scheme is applied in combined form
(e.g., for the two-dimensional case), Egs. (13) and (14)
may be written as

5= ?1{_ {FOUN, ¥R, uliny)

— FN o8, ulpn ) + FOON, v, o)

- F(‘lbilj—l > \[/ga vﬁf—l/Z)}a (19)

(18)

< 1.
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¢{.\](+1 =yf - {F¥, vk Fiv172,7)
- F(\[/;k—l,j’ \P:‘;a ai—l/Z,j) + F(K[/?;‘, ‘//fjﬂa 'Di,j+1/2)
- F(\I/;"fj—l, 1”';, i71‘,]—1/2)}, (20)

where ¥ is an expression as in (15). In this case, a
sufficient stability condition for the upstream scheme
is

(U%H/z,jAlz Utz,j+l/2At2
max 3 =
Ax Ay
[cf. Eq. (3-140) of Roache (1972), which implies (21)]
and for the second step of scheme (20)
max(ﬁxz+l/2,j2At2 f’zz,jﬂ/zzAtz
Ax Ay

1/2
) <272 (1)

ij

1/2

‘ ) <272, (22)
ij

Asin (18), it is easy to show that if (21) is valid then
the left-hand side of (22) is equal to 2'/%/4, so (22) is
valid too. In the three-dimensional case the expres-
sions equivalent to (21) and (22) have left-hand sides
whose maxima are 37" and 3'/%/4, respectively. So,
one can conclude that the “antidiffusive velocities”
can be increased by factors of 4, 2, %, respectively,
for one-, two- and three-dimensional cases, without
destroying the stability of the scheme. This property
of the scheme is very useful. Because the corrective
step is an “upstream” scheme, it also introduces some
implicit diffusion. Certainly, the procedure could be
repeated but that would double the time consumption
of the scheme. Additionally, in the multidimensional
combined case, the proposed procedure does not
compensate the implicit, cross partial derivative
terms, so repetition of the corrective step of the
scheme would amplify the cross-term effect. [The role
of the cross-term in advection scheme was discussed
in Smolarkiewicz (1982).] The compensation of the
implicit diffusion in the second step of the scheme
can be done by increasing “antidiffusion velocities”
by some factor Sc, i.e.,

Hhew = Scil.

(23)

‘As will be shown in the next section, this factor can
be estimated experimentally and significantly im-
proves the quality of the solution.

4. The results of the tests

To compare the behavior of the proposed scheme
with the behavior of the FCT, SAHS and Clark and
Hall’s schemes the two-dimensional solid body ro-
tation test was chosen. The grid space was (100Ax
by 100Ay), Ax = Ay = 1, At.= 0.1, and the constant
angular velocity w = 0.1. The velocity components
are u = —w(y — yp) and v = w(x — Xxp) where (xg, yo)
= (50AXx, 50Ay). In this circumstance, the maximum
value of the Courant number (#2A1?/Ax? + v?At?/
Ay*)'/? was 0.7, and one full rotation around the point
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FiG. 1. Initial condition for all tests. Scale values in left-front
and right-back corners are —2 and 4, respectively. The scale values
are the same in all figures.

(x0, yo) was equivalent to 628 iterations (i.e., time
steps). The initial condition was assumed in a form
of a cone with base radius 15Ax = 15Ay and maxi-
mum value 3.87 in point (X,,, Y,,) = (75Ax, 50Ay)
(Fig. 1). In all cases the same boundary conditions
were used. The first spatial partial derivative in the
normal direction was assumed to vanish at the out-
flow boundary (vanishing of the second derivative
does not insure the positive definition of the proposed
scheme). The undisturbed initial value of the field
was assumed at the inflow boundary. The hybrid
schemes, with which the proposed scheme has been

FI1G. 2. Solution for “upstream” scheme after
six full rotations (3768 iterations).
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compared, can be written for the two-dimensional
case in general form

W+ = gl — {[CX-FHX + (1 — CX)- FLX}111/2,
~ [CX-FHX — (1 — CX)-FLX]i_12,
+[CY-FHY + (1 — CY)-FLY), 112
~[CY-FHY ~ (1 — CY)-FLY),,_12},

where FHX, FHY are the advection fluxes in or-
thogonal directions from a high-order-accurate ad-
vection scheme (second order or above); FLX, FLY
are the orthogonal direction fluxes from a first-order
positive definite advection scheme; and CX, CY
are the matrices of corrective factors [CX.yy)2,],
[CY;+1/2), where the value of each factor is less than
or equal to unity and larger than or equal to zero
O<C<1). _

For all tests the FHX, FHY fluxes were assumed
to be from the Crowley advection scheme (Crowley,
1968), i.e.,

- Uu;. At
I‘HXiH/z,j = —%/A—zi— Wisr; + ¥ip)
1 (ui+1/2,jAt
2 Ax

and FLX, FLY were assumed the “upstream” scheme
fluxes of (4).

The major differences between the tested schemes
(FCT, SAHS and Clark and Hall’s method) are in the
determination of the corrective factors CX, CY. In
the case of the FCT method, scheme CX, CY were
determined following Zalesak. [1979, Section VI, for-
mulas 6’ to 13 and 17, 18'; in my experience, the

(24)

2
) (‘pH—l,j - ')bij)’ (25)

F1G. 3. As in Fig. 2, but for Clark-Hall hybrid schemes.
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optional use of formula 14’ (or 14 in the one-dimen-
sional case) gives very accurate solutions for an initial
condition which is some kind of step function, but
in a case of a smooth initial condition still tends to
convert the solution to a step function.] '

In the case of SAHS scheme, CX, CY were deter-
mined following Harten. [1978, Section 4, p. 371,
formulas 4.12 a, 4.12 b with p = 1, e = 107", &(w)
= w (notation as in referenced paper), CX in (24) is
dependent on CX defined by Harten by relation CX
= 1 — CXyanen-] In the tested case only this part of
the SAHS scheme has been applied which insures
positive definiteness of the scheme (Harten, 1978,
theorem, p. 372) while the optional “artificial com-
pressor” has been omitted. Such treatment of SAHS
was chosen because the full SAHS is more similar to
the FCT (in complication level, time consumption
and quality of results) than to the Clark-Hall or pro-
posed scheme. In contrast to the complicated form
of CX, CY for FCT or SAHS, corrective factors have
very simple forms in the case of the Clark-Hall
scheme. Following Clark (1979) CX may be written
as

(L ( Visiy = iy )?
|‘l/i+1,;| + I‘lbijl +te’
CXivip,; =< if CXiip; < (26)
L it X, > ¥
\_ e=107"9,

The form of (26) was postulated intuitively and finally
determined experimentally (Clark, Hall, personal
communications, 1982) and the role of the threshold
- value 1/2 is still unclear. I have found experimentally

FiG. 4. As in Fig. 2, but for SAHS hybrid scheme.
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FIG. 5. As in Fig. 2, but for FCT hybrid scheme.

that even better final results may be obtained when
1/2 in (26) is replaced by the Courant number
Uir2,;At/AX. The latter is consistent with informa-
tion (Clark, Hall, personal communication, 1982)
that most calculations done with (26) were in situa-
tions where the Courant number was ~ 1/2. Although
(26) does not ensure positive definiteness of scheme
(24), during all calculations the lowest negative values
obtained were of order 107°-107'3, The three differ-
ent versions of the hybrid scheme presented above
were compared with the following versions of the
present scheme: (i) six versions of [(19), (20)] with Sc
=1, 1.02, 1.04, 1.06, 1.08 and 1.1; (i) [(19), (20)]]
which means that corrective step (20) was applied

FiG. 6. As in Fig. 2, for basic version of proposed scheme,
[(19), (20)]Sc = 1.
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From comparison of Figs. 14 and 15 it can be seen
that more than one repetition of the corrective step
is rather inefficient, because it improves accuracy only
slightly but increases the time consumption of the
scheme. The [(13), (14)*]1s version of the scheme
gives better results than any tested hybrid type
scheme.

2) For practical application, in a case where the
low time consumption of the scheme is required, use
of the [(19), (20)] version of the scheme with a coef-
ficient S¢ seems to be the best option. Using Sc = 1.06
(Fig. 9) gives better results than any hybrid scheme.
For the considered tests the range of optimal values
of coeflicient Sc was obtained 1 < Sc < 1.08 (Sc = 1.1
increases maximum value over initial value). Prob-
ably for other flow fields this range may be slightly
different, but always can be found using some simple
tésts. '

5. General conclusion

1) Using the “upstream” advection scheme and
reducing the implicit diffusion by using a second
“upstream” step with a specially defined velocity field
leads to a new form of a positive definite advection
'scheme with small implicit diffusion. The obtained
scheme has a simple form that is computationally
efficient.

2) Implicit diffusion of the second corrective step
of the scheme may be reduced by introducing a “cor-
rection coefficient” Sc(1 < Sc < 1.08) which signifi-
cantly improves the results obtained.

3) When the proposed scheme is applied in *“‘time-
splitting” form, the corrective step of the scheme may
be repeated optionally. This gives the possibility of

FIG. 15. As in Fig. 13, but with twice repeated corrective
step, [(13), (14)°lrs.

MONTHLY WEATHER REVIEW
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TABLE 1. Comparison between different positive defined
schemes for solid body rotation test.

Scheme MAX MIN TC ER2 Fig.
Upstream 0.07 0. 1. 0.95 2
(Clark, Hall 0.65 -5 % 107'° 3.7 0.39 3
SAHS 0.37 —-5X 1072 39 0.63 4
FCT 0.79 -1 X 107" 7.7 0.29 5
((19), (20)]

Sc=1 0.60 0. 2.9 0.52 6

Sc = 1.02 0.68 0. 29 0.46 7

Sc = 1.04 0.77 0. 2.9 0.39 8

Sc = 1.06 0.85 0. 29 0.31 9

Sc = 1.08 0.96 0. 2.9 0.24 10

Sc= 1.1 1.20 0. 2.9 0.16 11
[(19), (20)?] 1.26 0. 5.0 -0.10 12
[(13), (14)}rs 0.56 0. 32 0.51 13
[(13), (14)*]1s 0.81 0. 5.2 0.19 14
[(13), (14)°]1s 0.84 0. 7.2 0.13 15

obtaining a more accurate solution. The practical
application of even one repetition of the corrective

_step gives results more accurate than any tested hy-

brid scheme.
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